Cavity-enhanced and spatial-multimode spin-wave-photon quantum interface

Practical realizations of quantum repeaters require quantum memory simultaneously providing high retrieval efficiency, long lifetime and multimode storages. So far, the combination of high retrieval efficiency and spatially multiplexed storages into a single memory remains challenging. Here, we set up a ring cavity that supports an array including 6 TEM00 modes and then demonstrated cavity enhanced and spatially multiplexed spin wave photon quantum interface (QI). The cavity arrangement is according to Fermat' optical theorem, which enables the six modes to experience the same optical length per round trip. Each mode includesn horizontal and vertical polarizations. Via DLCZ process in a cold atomic ensemble, we create non classically correlated pairs of spin waves and Stokes photons in the 12 modes. The retrieved fields from the multiplexed SWs are enhanced by the cavity and the average intrinsic retrieval efficiency reaches 70% at zero delay. The storage time for the case that cross-correlation function of the multiplexed QI is beyond 2 reaches 0.6ms .

[1]  E. Poem,et al.  Fast, noise-free atomic optical memory with 35-percent end-to-end efficiency , 2023, Communications Physics.

[2]  Shujing Li,et al.  Cavity-enhanced and temporally multiplexed atom-photon entanglement interface. , 2023, Optics express.

[3]  M. Afzelius,et al.  Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5 , 2022, Nature Communications.

[4]  H. Riedmatten,et al.  Long distance multiplexed quantum teleportation from a telecom photon to a solid-state qubit , 2022, Nature Communications.

[5]  Shujing Li,et al.  Generation of highly retrievable atom photon entanglement with a millisecond lifetime via a spatially multiplexed cavity , 2022, Quantum.

[6]  Bo Jing,et al.  Towards Real‐World Quantum Networks: A Review , 2022, Laser & Photonics Reviews.

[7]  Shujing Li,et al.  Noise suppression in a temporal-multimode quantum memory entangled with a photon via an asymmetrical photon-collection channel , 2021, Physical Review A.

[8]  C. Li,et al.  Multicell Atomic Quantum Memory as a Hardware-Efficient Quantum Repeater Node , 2021, PRX Quantum.

[9]  Jian-Wei Pan,et al.  Deterministic Time-Bin Entanglement between a Single Photon and an Atomic Ensemble. , 2021, Physical review letters.

[10]  C. Xie,et al.  High-performance cavity-enhanced quantum memory with warm atomic cell , 2021, Nature Communications.

[11]  W. Wasilewski,et al.  Massively-multiplexed generation of Bell-type entanglement using a quantum memory , 2021, Communications Physics.

[12]  S. Grandi,et al.  Telecom-heralded entanglement between multimode solid-state quantum memories , 2021, Nature.

[13]  G. Guo,et al.  Heralded entanglement distribution between two absorptive quantum memories , 2021, Nature.

[14]  Jian-Wei Pan,et al.  Cavity-Enhanced Atom-Photon Entanglement with Subsecond Lifetime. , 2021, Physical review letters.

[15]  E. Polzik,et al.  Room-temperature single-photon source with near-millisecond built-in memory , 2020, Nature Communications.

[16]  S. Ganguli,et al.  Enhancing Associative Memory Recall and Storage Capacity Using Confocal Cavity QED , 2020, 2009.01227.

[17]  I. Walmsley,et al.  Heralding quantum entanglement between two room-temperature atomic ensembles , 2020, Optica.

[18]  M. Cao,et al.  Efficient reversible entanglement transfer between light and quantum memories , 2020, Optica.

[19]  Shujing Li,et al.  Long-lived and multiplexed atom-photon entanglement interface with feed-forward-controlled readouts , 2020, Communications Physics.

[20]  H. de Riedmatten,et al.  Cold-Atom Temporally Multiplexed Quantum Memory with Cavity-Enhanced Noise Suppression. , 2020, Physical review letters.

[21]  Jian-Wei Pan,et al.  Entanglement of two quantum memories via fibres over dozens of kilometres , 2020, Nature.

[22]  W. Tittel,et al.  Improved light-matter interaction for storage of quantum states of light in a thulium-doped crystal cavity , 2020, Physical Review A.

[23]  Shannon Whitlock,et al.  Preparation of hundreds of microscopic atomic ensembles in optical tweezer arrays , 2019, npj Quantum Information.

[24]  Tobias Bauer,et al.  Long-Distance Distribution of Atom-Photon Entanglement at Telecom Wavelength. , 2019, Physical review letters.

[25]  Zachary A. Castillo,et al.  Spin-Wave Multiplexed Atom-Cavity Electrodynamics. , 2019, Physical review letters.

[26]  Yunfei Wang,et al.  Efficient quantum memory for single-photon polarization qubits , 2019, Nature Photonics.

[27]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[28]  Shujing Li,et al.  Multiplexed spin-wave–photon entanglement source using temporal multimode memories and feedforward-controlled readout , 2018, Physical Review A.

[29]  Jinxian Guo,et al.  High-performance Raman quantum memory with optimal control in room temperature atoms , 2018, Nature Communications.

[30]  J. Laurat,et al.  Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble , 2018, Nature Communications.

[31]  G. Rempe,et al.  Decoherence-protected memory for a single-photon qubit , 2017, Nature Photonics.

[32]  Christoph Simon,et al.  Towards a global quantum network , 2017, Nature Photonics.

[33]  Masato Koashi,et al.  Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network , 2017, Nature Communications.

[34]  W. Wasilewski,et al.  Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection , 2017, Nature Communications.

[35]  N. Gisin,et al.  Multimode and Long-Lived Quantum Correlations Between Photons and Spins in a Crystal. , 2017, Physical review letters.

[36]  H. de Riedmatten,et al.  Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory. , 2017, Physical review letters.

[37]  Y-F Pu,et al.  Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells , 2017, Nature Communications.

[38]  A. Feizpour,et al.  High-speed noise-free optical quantum memory , 2017, 1704.00013.

[39]  Shujing Li,et al.  Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks. , 2016, Physical review letters.

[40]  P. Lam,et al.  Highly efficient optical quantum memory with long coherence time in cold atoms , 2016, 1601.04267.

[41]  Joshua Nunn,et al.  Quantum memories: emerging applications and recent advances , 2015, Journal of modern optics.

[42]  Qiang Zhou,et al.  A multiplexed light-matter interface for fibre-based quantum networks , 2015, Nature Communications.

[43]  Jian-Wei Pan,et al.  An efficient quantum light–matter interface with sub-second lifetime , 2015, Nature Photonics.

[44]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[45]  E. Togan,et al.  Generation of heralded entanglement between distant hole spins , 2015, Nature Physics.

[46]  Jian-Wei Pan,et al.  Highly retrievable spin-wave-photon entanglement source. , 2015, Physical review letters.

[47]  Matteo Cristiani,et al.  Controlled Rephasing of Single Collective Spin Excitations in a Cold Atomic Quantum Memory. , 2015, Physical review letters.

[48]  Nicolas Gisin,et al.  Cavity-enhanced storage in an optical spin-wave memory , 2014, 1404.3489.

[49]  P. Grangier,et al.  Homodyne tomography of a single photon retrieved on demand from a cavity-enhanced cold atom memory. , 2013, Physical review letters.

[50]  R. Ricken,et al.  Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. , 2013, Physical review letters.

[51]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[52]  S. Kröll,et al.  Efficient quantum memory using a weakly absorbing sample. , 2013, Physical review letters.

[53]  Jian-Wei Pan,et al.  Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion , 2011 .

[54]  Y. O. Dudin,et al.  A quantum memory with telecom-wavelength conversion , 2010 .

[55]  Christoph Simon,et al.  Temporally multiplexed quantum repeaters with atomic gases , 2010, 1007.5028.

[56]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[57]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[58]  Y. O. Dudin,et al.  Long-lived quantum memory , 2009 .

[59]  Jian-Wei Pan,et al.  A millisecond quantum memory for scalable quantum networks , 2008, 0807.5064.

[60]  Jian-Wei Pan,et al.  Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. , 2008, Physical review letters.

[61]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[62]  Christoph Simon,et al.  Robust and efficient quantum repeaters with atomic ensembles and linear optics , 2008, 0802.1475.

[63]  D. Matsukevich,et al.  Entanglement of single-atom quantum bits at a distance , 2007, Nature.

[64]  J Laurat,et al.  Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. , 2007, Physical review letters.

[65]  V. Vuletić,et al.  Interfacing collective atomic excitations and single photons. , 2007, Physical review letters.

[66]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.

[67]  Alexey V. Gorshkov,et al.  Photon storage in Λ -type optically dense atomic media. I. Cavity model , 2006, quant-ph/0612082.

[68]  A. Kuzmich,et al.  Multiplexed memory-insensitive quantum repeaters. , 2006, Physical review letters.

[69]  H. Kimble,et al.  Direct measurement of decoherence for entanglement between a photon and stored atomic excitation. , 2006, Physical review letters.

[70]  Chin-Wen Chou,et al.  Efficient retrieval of a single excitation stored in an atomic ensemble. , 2006, Optics express.

[71]  H. Kimble,et al.  Control of decoherence in the generation of photon pairs from atomic ensembles (15 pages) , 2005, quant-ph/0507127.

[72]  A. D. Boozer,et al.  Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles , 2003, Nature.

[73]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[74]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[75]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .