Root Causes of Cycle-to-Cycle Combustion Variations in Spark Ignited Engines.

This document is the PhD thesis of Philipp Schiffmann in the University of Michigan, Ann Arbor, USA

[1]  M. D. Checkel,et al.  The Importance of High-Frequency, Small-Eddy Turbulence in Spark Ignited, Premixed Engine Combustion , 1995 .

[2]  F. Halter,et al.  Lewis number and Markstein length effects on turbulent expanding flames in a spherical vessel , 2016 .

[3]  Hao Chen,et al.  On the use and interpretation of proper orthogonal decomposition of in-cylinder engine flows , 2012, Measurement Science and Technology.

[4]  F. Halter,et al.  Experimental Investigations for Turbulent Premixed Flame Analysis , 2013 .

[5]  J. Driscoll,et al.  Turbulent Premixed Hydrogen/Air Flames at High Reynolds Numbers , 1990 .

[6]  Christine Mounaïm-Rousselle,et al.  Fuel performances in Spark-Ignition (SI) engines: Impact of flame stretch , 2016 .

[7]  P. Gaskell,et al.  Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study , 1996 .

[8]  Simone Lombardi,et al.  Analysis of Diesel engine combustion using imaging and independent component analysis , 2013 .

[9]  Daniel C. Haworth,et al.  Development and assessment of POD for analysis of turbulent flow in piston engines , 2011 .

[10]  John B. Heywood,et al.  Flame initiation in a spark-ignition engine , 1986 .

[11]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[12]  Robert K. Cheng,et al.  Numerical simulation of Lewis number effects on lean premixed turbulent flames , 2007 .

[13]  C. Vafidis,et al.  The effect of engine speed on the TDC flowfield in a motored reciprocating engine , 1986 .

[14]  Murray J. Thomson,et al.  An experimental and kinetic modeling study of n-octane and 2-methylheptane in an opposed-flow diffusion flame , 2010 .

[15]  Thierry Poinsot,et al.  LES study of cycle-to-cycle variations in a spark ignition engine , 2011 .

[16]  Yannis Hardalupas,et al.  Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine , 2004 .

[17]  Volker Sick,et al.  Particle-image velocimetry measurement errors when imaging through a transparent engine cylinder , 2002 .

[18]  S. M. Sarathy,et al.  Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20 , 2011 .

[19]  Ronald J. Adrian,et al.  Dynamic ranges of velocity and spatial resolution of particle image velocimetry , 1997 .

[20]  V. A. Miller,et al.  Single- and dual-band collection toluene PLIF thermometry in supersonic flows , 2013 .

[21]  David L. Reuss,et al.  Cyclic Variability of Large-Scale Turbulent Structures in Directed and Undirected IC Engine Flows , 2000 .

[22]  Robert J. Kee,et al.  CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics , 1996 .

[23]  C. Sung,et al.  Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters , 1999 .

[24]  P. Aleiferis,et al.  The nature of early flame development in a lean-burn stratified-charge spark-ignition engine , 2004 .

[25]  Neil A. Halliwell,et al.  Digital Particle Image Velocimetry: Partial Image Error (PIE) , 2006 .

[26]  R. Maly,et al.  Initiation and propagation of flame fronts in lean CH4-air mixtures by the three modes of the ignition spark , 1979 .

[27]  John B. Heywood,et al.  Internal combustion engine fundamentals , 1988 .

[28]  J. Heywood,et al.  How Heat Losses to the Spark Plug Electrodes Affect Flame Kernel Development in an SI-Engine , 1990 .

[29]  P. G. Hill,et al.  The relationship between cyclic variations in spark-ignition engines and the small structure of turbulence , 1989 .

[30]  Richard W. Anderson,et al.  Turbulent scales in a fan-stirred combustion bomb , 2001 .

[31]  K. Kuo Principles of combustion , 1986 .

[32]  Stephen C. Bates,et al.  Flame Imaging Studies of Cycle-by-Cycle Combustion Variation in a SI Four-Stroke Engine , 1989 .

[33]  John B. Heywood,et al.  Early flame development and burning rates in spark ignition engines and their cyclic variability , 1987 .

[34]  Volker Sick,et al.  High-Speed Particle Image Velocimetry Study of In-Cylinder Flows with Improved Dynamic Range , 2013 .

[35]  Min Xu,et al.  Analyzing in-Cylinder Flow Evolution and Variations in a Spark-Ignition Direct-Injection Engine Using Phase-Invariant Proper Orthogonal Decomposition Technique , 2014 .

[36]  Sébastien Candel,et al.  Experiments on Collapsing Cylindrical Flames , 2001 .

[37]  Volker Sick,et al.  Measurement of digital particle image velocimetry precision using electro-optically created particle-image displacements , 2002 .

[38]  E. Sher,et al.  Cyclic Variability in Spark Ignition Engines A Literature Survey , 1994 .

[39]  R. Strehlow,et al.  On the propagation of turbulent flames , 1969 .

[40]  M. Mungal,et al.  Flame speed measurements at the tip of a slot burner: Effects of flame curvature and hydrodynamic stretch , 1991 .

[41]  Jonathan Dale,et al.  Application of high energy ignition systems to engines , 1997 .

[42]  A. Benkenida,et al.  Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES , 2009 .

[43]  Domenic A. Santavicca,et al.  Turbulence Effects on Early Flame Kernel Growth , 1987 .

[44]  M. Haq,et al.  Turbulent burning velocity, burned gas distribution, and associated flame surface definition , 2003 .

[45]  John B. Heywood,et al.  Lean SI Engines: The role of combustion variability in defining lean limits , 2007 .

[46]  M. Matalon,et al.  The dependence of the Markstein length on stoichiometry , 2001 .

[47]  Markus Raffel,et al.  Particle Image Velocimetry: A Practical Guide , 2002 .

[48]  Markstein Numbers of Negatively-Stretched Premixed Flames: Microgravity Measurements and Computations , 2013 .

[49]  R. Maly,et al.  Ignition model for spark discharges and the early phase of flame front growth , 1981 .

[50]  C. G. W. Sheppard,et al.  Effects of large-scale turbulence on cyclic variability in spark-ignition engine , 2012 .

[51]  Frederic Anton Matekunas,et al.  MODES AND MEASURES OF CYCLIC COMBUSTION VARIABILITY , 1983 .

[52]  Min Xu,et al.  Cycle-to-cycle variation analysis of early flame propagation in engine cylinder using proper orthogonal decomposition , 2014 .

[53]  Stanislav V. Bohac,et al.  An Extreme Learning Machine Approach to Predicting Near Chaotic HCCI Combustion Phasing in Real-Time , 2013, ArXiv.

[54]  Ajay K. Prasad,et al.  Stereoscopic particle image velocimetry , 2000 .

[55]  Volker Sick,et al.  TCC-III Engine Benchmark for Large-Eddy Simulation of IC Engine Flows , 2016 .

[56]  Adam Vaughan,et al.  Adaptive Machine Learning for Modeling and Control of Non-Stationary, Near Chaotic Combustion in Real-Time. , 2015 .

[57]  Gerard M. Faeth,et al.  Laminar burning velocities and Markstein numbers of hydrocarbonair flames , 1993 .

[58]  F. Halter,et al.  Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures , 2012 .

[59]  Bengt Johansson,et al.  CYCLE TO CYCLE VARIATIONS IN S.I. ENGINES : THE EFFECTS OF FLUID FLOW AND GAS COMPOSITION IN THE VICINITY OF THE SPARK PLUG ON EARLY COMBUSTION , 1996 .

[60]  G. Settles,et al.  Schlieren and Shadowgraph Techniques : Visualizing Phenomena in Transparent Media , 2012 .

[61]  Hao Chen,et al.  A practical guide for using proper orthogonal decomposition in engine research , 2013 .

[62]  Thierry Poinsot,et al.  A Study of the Laminar Flame Tip and Implications for Premixed Turbulent Combustion , 1992 .

[63]  Myung Taeck Lim,et al.  Spark kernel development in constant volume combustion , 2003 .

[64]  F. Halter,et al.  Turbulence characterization of a high-pressure high-temperature fan-stirred combustion vessel using LDV, PIV and TR-PIV measurements , 2013 .

[65]  D. B. Smith,et al.  Comment on “laminar burning velocities and Markstein numbers of hydrocarbon/air flames” by L.-K. Tseng, M.A. Ismail, and G.M. Faeth , 1995 .

[66]  J. Driscoll Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities , 2008 .

[67]  David E. Cole,et al.  Mixture Motion - Its Effect on Pressure Rise in a Combustion Bomb: A New Look at Cyclic Variation , 1968 .

[68]  Daniel C. Haworth,et al.  Application of the proper orthogonal decomposition to datasets of internal combustion engine flows , 2004 .

[69]  Volker Sick,et al.  Analysis of misfires in a direct injection engine using proper orthogonal decomposition , 2011 .

[70]  Volker Sick,et al.  Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems , 2005 .