Thermal storage performance of molten salt thermocline system with packed phase change bed

Abstract Comprehensive transient and two-dimensional numerical model is developed to study energy storage performance of molten salt thermocline thermal storage system with packed phase change bed in solar thermal power. The results show that the packed phase change bed can remarkably increase the effective discharging energy and discharging efficiency. Because of phase change material, the thermocline can be divided into three stages including the high temperature thermocline, low temperature thermocline and phase change layer. As the melting point within the inlet and initial temperature increases, the whole discharging time decreases, while the effective discharging energy remarkably increases, and thus the melting point of phase change material should be within the initial temperature and effective outlet temperature for good heat storage performance. As the phase change material content increases, the effective discharging energy increases with the effective discharging time rising, and the effective discharging efficiency also increases.

[1]  Kody M. Powell,et al.  An adaptive-grid model for dynamic simulation of thermocline thermal energy storage systems , 2013 .

[2]  K. Vafai,et al.  Analysis of Variants Within the Porous Media Transport Models , 2000 .

[3]  Jon T. Van Lew,et al.  Transient Heat Delivery and Storage Process in a Thermocline Heat Storage System , 2009 .

[4]  Ulf Herrmann,et al.  Two-tank molten salt storage for parabolic trough solar power plants , 2004 .

[5]  K. Ismail,et al.  A parametric study on possible fixed bed models for pcm and sensible heat storage , 1999 .

[6]  Soteris A. Kalogirou,et al.  Solar thermal collectors and applications , 2004 .

[7]  S. Garimella,et al.  Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions , 2010 .

[8]  Zhifeng Wang,et al.  Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system , 2012 .

[9]  H. Johnstone,et al.  Heat and mass transfer in packed beds , 1955 .

[10]  K. Nithyanandam,et al.  Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power , 2014 .

[11]  Luisa F. Cabeza,et al.  State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies , 2010 .

[12]  Zhifeng Wang,et al.  Prospectives for China's solar thermal power technology development , 2010 .

[13]  Hans Müller-Steinhagen,et al.  A new method of characterization for stratified thermal energy stores , 2007 .

[14]  J. Pacheco,et al.  DEVELOPMENT OF A MOLTEN-SALT THERMOCLINE THERMAL STORAGE SYSTEM FOR PARABOLIC TROUGH PLANTS , 2001 .

[15]  J. Lienhard A heat transfer textbook , 1981 .

[16]  Hao Peng,et al.  Thermal investigation of PCM-based high temperature thermal energy storage in packed bed , 2014 .

[17]  John W. Kelton,et al.  Testing of Thermocline Filler Materials and Molten-Salt Heat Transfer Fluids for Thermal Energy Storage Systems in Parabolic Trough Power Plants , 2004 .

[18]  Keith Lovegrove,et al.  TECHNO-ECONOMIC ANALYSIS OF A 10 MWe SOLAR THERMAL POWER PLANT USING AMMONIA-BASED THERMOCHEMICAL ENERGY STORAGE , 1999 .

[19]  Piyush Sabharwall,et al.  Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties , 2010 .

[20]  Runhua Jiang,et al.  Criteria for performance improvement of a molten salt thermocline storage system , 2012 .