New constraints on the structure and dynamics of black hole jets

Accreting black holes produce powerful relativistic plasma jets which emit radiation across all observable wavelengths but the details of the initial acceleration and confinement of the jet are uncertain. We apply an innovative new model that allows us to determine key properties of the acceleration zone via multi-frequency observations. The central component of the model is a relativistic steady-state fluid flow, and the emission from physically distinct regions can be seen to contribute to different energy bands in the overall spectrum. By fitting with unprecedented accuracy to 42 simultaneous multiwavelength blazar spectra we are able to constrain the location of the brightest synchrotron emitting region, and show that there must be a linear relation between the jet power and the radius of the brightest region of the jet. We also find a correlation between the length of the accelerating region and the maximum bulk Lorentz factor of the jet and find evidence for a bimodal distribution of accretion rates in the blazar population. This allows us to put constraints on the basic dynamical and structural properties of blazar jets and to understand the underlying physical differences which result in the blazar sequence.

[1]  M. Petropoulou Time-dependent modelling of PKS 2155-304 in a low state , 2014, 1409.3739.

[2]  A. Marscher,et al.  SEED PHOTON FIELDS OF BLAZARS IN THE INTERNAL SHOCK SCENARIO , 2014, 1403.1354.

[3]  D. Evans,et al.  An X-ray survey of the 2 Jy sample – I. Is there an accretion mode dichotomy in radio-loud AGN? , 2014, 1402.1770.

[4]  E. Recillas,et al.  EXPLORING THE BLAZAR ZONE IN HIGH-ENERGY FLARES OF FSRQs , 2013, 1312.3998.

[5]  G. Cotter,et al.  Synchrotron and inverse-Compton emission from blazar jets – IV. BL Lac type blazars and the physical basis for the blazar sequence , 2013, 1310.0462.

[6]  A. Prakash,et al.  LEPTONIC AND HADRONIC MODELING OF FERMI-DETECTED BLAZARS , 2013, 1304.0605.

[7]  G. Cotter,et al.  Synchrotron and inverse-Compton emission from blazar jets - III. Compton-dominant blazars , 2013, 1303.1182.

[8]  R. Romani,et al.  SPECTROSCOPY OF THE LARGEST EVER γ-RAY-SELECTED BL LAC SAMPLE , 2013, 1301.0323.

[9]  G. Cotter,et al.  Synchrotron and inverse-Compton emission from blazar jets - II. An accelerating jet model with a geometry set by observations of M87 , 2012, 1212.2632.

[10]  P. Gandhi,et al.  Jet spectral breaks in black hole X-ray binaries , 2012, 1211.1655.

[11]  G. Werner,et al.  BEAMING AND RAPID VARIABILITY OF HIGH-ENERGY RADIATION FROM RELATIVISTIC PAIR PLASMA RECONNECTION , 2012, 1205.3210.

[12]  G. Cotter,et al.  Synchrotron and inverse-Compton emission from blazar jets I: a uniform conical jet model. , 2012, 1203.3881.

[13]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[14]  Anthony C. S. Readhead,et al.  SPECTROSCOPY OF BROAD-LINE BLAZARS FROM 1LAC , 2012, 1201.0999.

[15]  G. E. Romero,et al.  An inhomogeneous lepto-hadronic model for the radiation of relativistic jets: Application to XTE J1118+480 , 2011, 1112.2560.

[16]  Masanori Nakamura,et al.  THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES , 2011, 1110.1793.

[17]  M. Baring,et al.  DIFFUSIVE ACCELERATION OF PARTICLES AT OBLIQUE, RELATIVISTIC, MAGNETOHYDRODYNAMIC SHOCKS , 2011, 1110.5968.

[18]  M. Lister,et al.  FROM THE BLAZAR SEQUENCE TO THE BLAZAR ENVELOPE: REVISITING THE RELATIVISTIC JET DICHOTOMY IN RADIO-LOUD ACTIVE GALACTIC NUCLEI , 2011, 1107.5105.

[19]  A. Stamerra,et al.  On the origin of the γ-ray emission from the flaring blazar PKS 1222+216 , 2011, 1104.0048.

[20]  G. Ghisellini,et al.  The transition between BL Lac objects and flat spectrum radio quasars , 2010, 1012.0308.

[21]  P. Giommi,et al.  A change in the optical polarization associated with a γ-ray flare in the blazar 3C 279 , 2010 .

[22]  Kavli Institute for Particle Astrophysics,et al.  BLACK HOLE SPIN AND THE RADIO LOUD/QUIET DICHOTOMY OF ACTIVE GALACTIC NUCLEI , 2009, 0911.2228.

[23]  C. Kaiser,et al.  iShocks: X-ray binary jets with an internal shocks model , 2009, 0909.1309.

[24]  M. Sikora,et al.  CONSTRAINING EMISSION MODELS OF LUMINOUS BLAZAR SOURCES , 2009, 0904.1414.

[25]  A. Pe’er,et al.  A MODEL FOR EMISSION FROM JETS IN X-RAY BINARIES: CONSEQUENCES OF A SINGLE ACCELERATION EPISODE , 2009, 0902.2892.

[26]  C. Dermer,et al.  GAMMA-RAY STUDIES OF BLAZARS: SYNCHRO-COMPTON ANALYSIS OF FLAT SPECTRUM RADIO QUASARS , 2008, 0808.3185.

[27]  A. Levinson,et al.  RECOLLIMATION AND RADIATIVE FOCUSING OF RELATIVISTIC JETS: APPLICATIONS TO BLAZARS AND M87 , 2008, 0810.0562.

[28]  R. Sambruna,et al.  Testing the blazar spectral sequence: X-ray-selected blazars , 2008, 0810.0145.

[29]  Ž. Ivezić,et al.  AGN Dusty Tori. II. Observational Implications of Clumpiness , 2008, 0806.0512.

[30]  G. Ghisellini,et al.  The blazar sequence: a new perspective , 2008, 0802.1918.

[31]  J. Kirk,et al.  A synchrotron self-Compton model with low-energy electron cut-off for the blazar S5 0716+714 , 2007, 0710.1564.

[32]  M. Hoshino,et al.  Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas , 2007, 0708.1000.

[33]  M. Elitzur The obscuring torus in AGN , 2006 .

[34]  M. Cohen,et al.  ACCEPTED FOR PUBLICATION IN APJ LETTERS Preprint typeset using LATEX style emulateapj v. 12/14/05 INTRINSIC BRIGHTNESS TEMPERATURES OF AGN JETS , 2006 .

[35]  V. Beskin,et al.  The effective acceleration of plasma outflow in the paraboloidal magnetic field , 2006 .

[36]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[37]  C. Kaiser The flat synchrotron spectra of partially self-absorbed jets revisited , 2006, astro-ph/0601103.

[38]  J. Krolik,et al.  Magnetically Driven Jets in the Kerr Metric , 2005, astro-ph/0512227.

[39]  D. Maoz,et al.  The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei , 2005, astro-ph/0504484.

[40]  D. Harris,et al.  An X-Ray Study of Magnetic Field Strengths and Particle Content in the Lobes of FR II Radio Sources , 2005, astro-ph/0503203.

[41]  Paul S. Smith,et al.  Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Jet Kinematics from Bimonthly Monitoring with the Very Long Baseline Array , 2005, astro-ph/0502501.

[42]  M. Heidelberg,et al.  The Radio-ultraviolet spectral energy distribution of the jet in 3C 273 , 2004, astro-ph/0410520.

[43]  N. Vlahakis,et al.  Relativistic Magnetohydrodynamics with Application to Gamma-Ray Burst Outflows. I. Theory and Semianalytic Trans-Alfvénic Solutions , 2003, astro-ph/0303482.

[44]  J. Chiang,et al.  X-Ray Spectral Variability Signatures of Flares in BL Lacertae Objects , 2002, astro-ph/0208238.

[45]  Nrao,et al.  Relativistic models and the jet velocity field in the radio galaxy 3C 31 , 2002, astro-ph/0206215.

[46]  R. Perley,et al.  HST optical spectral index map of the jet of 3C 273 , 2001, astro-ph/0104393.

[47]  D. Lazzati,et al.  Internal shocks in the jets of radio-loud quasars , 2001, astro-ph/0103424.

[48]  A. V. Yurchenko,et al.  Multiepoch Very Long Baseline Array Observations of EGRET-detected Quasars and BL Lacertae Objects: Superluminal Motion of Gamma-Ray Bright Blazars , 2001, astro-ph/0101570.

[49]  Sera Markoff,et al.  A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the , 2000, astro-ph/0010560.

[50]  M. Sikora,et al.  Comptonization of Infrared Radiation from Hot Dust by Relativistic Jets in Quasars , 2000, astro-ph/0008154.

[51]  Hui Li,et al.  Temporal and Spectral Variabilities of High-Energy Emission from Blazars Using Synchrotron Self-Compton Models , 2000, astro-ph/0002134.

[52]  David L. Meier,et al.  A Magnetically Switched, Rotating Black Hole Model for the Production of Extragalactic Radio Jets and the Fanaroff and Riley Class Division , 1998, astro-ph/9810352.

[53]  A. Comastri,et al.  A theoretical unifying scheme for gamma-ray bright blazars , 1998, astro-ph/9807317.

[54]  Italy.,et al.  A unifying view of the spectral energy distributions of blazars , 1998, astro-ph/9804103.

[55]  C. Megan Urry,et al.  VARIABILITY OF ACTIVE GALACTIC NUCLEI , 1997 .

[56]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[57]  G. Bicknell Relativistic Jets and the Fanaroff-Riley Classification of Radio Galaxies , 1994, astro-ph/9406064.

[58]  J. Kirk,et al.  Particle acceleration at shocks - a Monte Carlo method , 1987 .

[59]  D. Hutter,et al.  Coordinated multifrequency observations of the BL Lacertae objects Mrk 180 and Mrk 501 , 1984 .

[60]  Martin J. Rees,et al.  Theory of extragalactic radio sources , 1984 .

[61]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[62]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[63]  Kip S. Thorne,et al.  Disk-Accretion onto a Black Hole. Time-Averaged Structure of Accretion Disk , 1974 .