Global Robust Stability and Synchronization of Networks With Lorenz-Type Nodes

This brief addresses in a unified framework both global robust stability and synchronization problems for a class of directed networks with Lorenz-type nodes. When the key parameter in the node equation is modified, it covers the Lorenz, Chen, and Lu types of networks as special cases. Based on an observation about some special nonlinear characteristics of Lorenz-type systems, simple conditions are derived for global stability and synchronization of such networks, where the typical Lipschitz-type condition for nonlinear functions is not needed. By combining the pinning control strategy and a new linear control law, synchronization of a network with different nodes can be achieved. Several examples are given for illustration.

[1]  Tianping Chen,et al.  Boundedness and synchronization of y-coupled Lorenz systems with or without controllers ☆ , 2008 .

[2]  Pei Yu,et al.  Globally Attractive and Positive Invariant Set of the Lorenz System , 2006, Int. J. Bifurc. Chaos.

[3]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[4]  Tianping Chen,et al.  Pinning Complex Networks by a Single Controller , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[5]  Chai Wah Wu,et al.  Synchronization in Coupled Chaotic Circuits and Systems , 2002 .

[6]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[7]  Xiang Li,et al.  Pinning a complex dynamical network to its equilibrium , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[8]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[9]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[10]  C. Wu Synchronization in networks of nonlinear dynamical systems coupled via a directed graph , 2005 .

[11]  Maurizio Porfiri,et al.  Criteria for global pinning-controllability of complex networks , 2008, Autom..

[12]  V O Bolshoy,et al.  PASSIVITY BASED DESIGN OF SYNCHRONIZING SYSTEMS , 1998 .

[13]  Gennady A. Leonov,et al.  Bounds for attractors and the existence of homoclinic orbits in the lorenz system , 2001 .

[14]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[15]  Alan V. Oppenheim,et al.  Synchronization of Lorenz-based chaotic circuits with applications to communications , 1993 .

[16]  Daizhan Cheng,et al.  Bridge the Gap between the Lorenz System and the Chen System , 2002, Int. J. Bifurc. Chaos.

[17]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[18]  Zhi Li,et al.  New eigenvalue based approach to synchronization in asymmetrically coupled networks. , 2007, Chaos.

[19]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[20]  F. Garofalo,et al.  Pinning-controllability of complex networks , 2007, cond-mat/0701073.

[21]  Ji Xiang,et al.  On the V-stability of complex dynamical networks , 2007, Autom..

[22]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[23]  Chao Liu,et al.  Network synchronizability analysis: the theory of subgraphs and complementary graphs , 2007, ArXiv.

[24]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[25]  Lin Huang,et al.  Synchronization of weighted networks and complex synchronized regions , 2008 .

[26]  T. Carroll,et al.  MASTER STABILITY FUNCTIONS FOR SYNCHRONIZED COUPLED SYSTEMS , 1999 .

[27]  Daizhan Cheng,et al.  Characterizing the synchronizability of small-world dynamical networks , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[29]  Henk Nijmeijer,et al.  Synchronization and Graph Topology , 2005, Int. J. Bifurc. Chaos.

[30]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[31]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[32]  Faqiang Wang,et al.  Synchronization of unified chaotic system based on passive control , 2007 .

[33]  H. Nijmeijer,et al.  An ultimate bound on the trajectories of the Lorenz system and its applications , 2003 .

[34]  Xiao Fan Wang,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[35]  Z. Duan,et al.  Complex network synchronizability: analysis and control. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Guanrong Chen,et al.  Global synchronization and asymptotic stability of complex dynamical networks , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[37]  Przemyslaw Perlikowski,et al.  Ragged synchronizability of coupled oscillators. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.