Using CSP To Improve Deterministic 3-SAT

We show how one can use certain deterministic algorithms for higher-value constraint satisfaction problems (CSPs) to speed up deterministic local search for 3-SAT. This way, we improve the deterministic worst-case running time for 3-SAT to O(1.439^n).

[1]  Dominik Scheder,et al.  Using a Skewed Hamming Distance to Speed Up Deterministic Local Search , 2010, ArXiv.

[2]  Dominik Scheder,et al.  Guided Search and a Faster Deterministic Algorithm for 3-SAT , 2008, LATIN.

[3]  Daniel Rolf,et al.  Improved Bound for the PPSZ/Schöning-Algorithm for 3-SAT , 2006, J. Satisf. Boolean Model. Comput..

[4]  W. Kern,et al.  An improved deterministic local search algorithm for 3-SAT , 2004, Theor. Comput. Sci..

[5]  Jon M. Kleinberg,et al.  A deterministic (2-2/(k+1))n algorithm for k-SAT based on local search , 2002, Theor. Comput. Sci..

[6]  U. Schöning A probabilistic algorithm for k-SAT and constraint satisfaction problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[7]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[8]  Pavel Pudlák,et al.  Satisfiability Coding Lemma , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.