Dysregulated miRNA biogenesis downstream of cellular stress and ALS‐causing mutations: a new mechanism for ALS

Interest in RNA dysfunction in amyotrophic lateral sclerosis (ALS) recently aroused upon discovering causative mutations in RNA‐binding protein genes. Here, we show that extensive down‐regulation of miRNA levels is a common molecular denominator for multiple forms of human ALS. We further demonstrate that pathogenic ALS‐causing mutations are sufficient to inhibit miRNA biogenesis at the Dicing step. Abnormalities of the stress response are involved in the pathogenesis of neurodegeneration, including ALS. Accordingly, we describe a novel mechanism for modulating microRNA biogenesis under stress, involving stress granule formation and re‐organization of DICER and AGO2 protein interactions with their partners. In line with this observation, enhancing DICER activity by a small molecule, enoxacin, is beneficial for neuromuscular function in two independent ALS mouse models. Characterizing miRNA biogenesis downstream of the stress response ties seemingly disparate pathways in neurodegeneration and further suggests that DICER and miRNAs affect neuronal integrity and are possible therapeutic targets.

[1]  Jamie M. Verheyden,et al.  Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia , 2014, Nature Medicine.

[2]  M. Strong,et al.  RNA metabolism in ALS: When normal processes become pathological , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[3]  R. D'Alessandro,et al.  miR-338-3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients , 2014, neurogenetics.

[4]  I. Bozzoni,et al.  An ALS-associated mutation in the FUS 3′-UTR disrupts a microRNA–FUS regulatory circuitry , 2014, Nature Communications.

[5]  E. Hornstein,et al.  miRNAs at the interface of cellular stress and disease , 2014, The EMBO journal.

[6]  E. Gascon,et al.  The Emerging Roles of MicroRNAs in the Pathogenesis of Frontotemporal Dementia–Amyotrophic Lateral Sclerosis (FTD-ALS) Spectrum Disorders , 2014, Journal of neurogenetics.

[7]  G. Feng,et al.  The Role of Muscle microRNAs in Repairing the Neuromuscular Junction , 2014, PloS one.

[8]  Neil R. Smalheiser,et al.  Enoxacin Elevates MicroRNA Levels in Rat Frontal Cortex and Prevents Learned Helplessness , 2014, Front. Psychiatry.

[9]  Justin J. Cassidy,et al.  miR-9a Minimizes the Phenotypic Impact of Genomic Diversity by Buffering a Transcription Factor , 2013, Cell.

[10]  J. Trojanowski,et al.  Therapeutic modulation of eIF2α-phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models , 2013, Nature Genetics.

[11]  Robert V Farese,et al.  Downregulation of MicroRNA-9 in iPSC-Derived Neurons of FTD/ALS Patients with TDP-43 Mutations , 2013, PloS one.

[12]  Timothy A. Miller,et al.  Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. , 2013, Human molecular genetics.

[13]  F. Slack,et al.  MicroRNAs and the genetic network in aging. , 2013, Journal of molecular biology.

[14]  D. A. Bosco,et al.  Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics , 2013, Molecular Neurodegeneration.

[15]  D. Cleveland,et al.  Converging Mechanisms in ALS and FTD: Disrupted RNA and Protein Homeostasis , 2013, Neuron.

[16]  Jian Wang,et al.  Detection of a novel frameshift mutation and regions with homozygosis within ARHGEF28 gene in familial amyotrophic lateral sclerosis , 2013, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[17]  T. Hobman,et al.  Hsp90 cochaperones p23 and FKBP4 physically interact with hAgo2 and activate RNA interference–mediated silencing in mammalian cells , 2013, Molecular biology of the cell.

[18]  A. Ludolph,et al.  Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis , 2013, Acta neuropathologica communications.

[19]  S. Rutkove,et al.  Electrophysiologic Biomarkers for Assessing Disease Progression and the Effect of Riluzole in SOD1 G93A ALS Mice , 2013, PloS one.

[20]  L. Rubin,et al.  A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. , 2013, Cell stem cell.

[21]  L. Niedernhofer,et al.  Identification of microRNAs dysregulated in cellular senescence driven by endogenous genotoxic stress , 2013, Aging.

[22]  M. Strong,et al.  Altered microRNA expression profile in amyotrophic lateral sclerosis: a role in the regulation of NFL mRNA levels , 2013, Molecular Brain.

[23]  Jennifer A. Doudna,et al.  Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing , 2013, Nucleic acids research.

[24]  Yan Wang,et al.  EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2 , 2013, Nature.

[25]  Oliver D. King,et al.  Stress granules as crucibles of ALS pathogenesis , 2013, The Journal of cell biology.

[26]  Rebecca B. Smith,et al.  RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. , 2013, Human molecular genetics.

[27]  T. Hortobágyi,et al.  ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules , 2013, Human molecular genetics.

[28]  Michael Benatar,et al.  Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS , 2013, Nature.

[29]  M. Kiaei,et al.  Premature death of TDP‐43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis , 2013, International journal of experimental pathology.

[30]  I. Bozzoni,et al.  FUS stimulates microRNA biogenesis by facilitating co‐transcriptional Drosha recruitment , 2012, The EMBO journal.

[31]  J. Doudna,et al.  TRBP alters human precursor microRNA processing in vitro. , 2012, RNA.

[32]  A. Aulas,et al.  Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP , 2012, Molecular Neurodegeneration.

[33]  T. Hortobágyi,et al.  Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion , 2012, Acta Neuropathologica.

[34]  C. Kahn,et al.  Role of microRNA processing in adipose tissue in stress defense and longevity. , 2012, Cell metabolism.

[35]  Derek J. Bailey,et al.  Parallel Reaction Monitoring for High Resolution and High Mass Accuracy Quantitative, Targeted Proteomics* , 2012, Molecular & Cellular Proteomics.

[36]  C. Sephton,et al.  TDP-43 aggregation in neurodegeneration: Are stress granules the key? , 2012, Brain Research.

[37]  Chuan He,et al.  Iron homeostasis regulates the activity of the microRNA pathway through poly(C)-binding protein 2. , 2012, Cell metabolism.

[38]  J. Mendell,et al.  MicroRNAs in Stress Signaling and Human Disease , 2012, Cell.

[39]  Y. Kawahara,et al.  TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes , 2012, Proceedings of the National Academy of Sciences.

[40]  J. Jia,et al.  Nuclear localization sequence of FUS and induction of stress granules by ALS mutants , 2011, Neurobiology of Aging.

[41]  P. Subramanian,et al.  Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. , 2011, Cell metabolism.

[42]  Yang Shi,et al.  Hypoxia Potentiates MicroRNA-Mediated Gene Silencing through Posttranslational Modification of Argonaute2 , 2011, Molecular and Cellular Biology.

[43]  C. Masters,et al.  C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress , 2011, Molecular Neurodegeneration.

[44]  G. Rouleau,et al.  TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. , 2011, Human molecular genetics.

[45]  S. Ropero,et al.  Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing , 2011, Proceedings of the National Academy of Sciences.

[46]  J. Trojanowski,et al.  Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. , 2011, The Journal of clinical investigation.

[47]  Daniel R. Dries,et al.  TDP-43 Is Directed to Stress Granules by Sorbitol, a Novel Physiological Osmotic and Oxidative Stressor , 2010, Molecular and Cellular Biology.

[48]  D. A. Bosco,et al.  Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. , 2010, Human molecular genetics.

[49]  P. Sharp,et al.  MicroRNA functions in stress responses. , 2010, Molecular cell.

[50]  L. Petrucelli,et al.  Tar DNA Binding Protein-43 (TDP-43) Associates with Stress Granules: Analysis of Cultured Cells and Pathological Brain Tissue , 2010, PloS one.

[51]  A. Ludolph,et al.  Novel missense and truncating mutations in FUS/TLS in familial ALS , 2010, Neurology.

[52]  I. Mackenzie,et al.  ALS‐associated fused in sarcoma (FUS) mutations disrupt Transportin‐mediated nuclear import , 2010, The EMBO journal.

[53]  C. Tabin,et al.  miRNA malfunction causes spinal motor neuron disease , 2010, Proceedings of the National Academy of Sciences.

[54]  E. Buratti,et al.  Nuclear factor TDP‐43 can affect selected microRNA levels , 2010, The FEBS journal.

[55]  P. Ivanov,et al.  eIF5A Promotes Translation Elongation, Polysome Disassembly and Stress Granule Assembly , 2010, PloS one.

[56]  S. Pereson,et al.  TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration , 2010, Proceedings of the National Academy of Sciences.

[57]  R. Parker,et al.  Eukaryotic stress granules: the ins and outs of translation. , 2009, Molecular cell.

[58]  J. Sanes,et al.  MicroRNA-206 Delays ALS Progression and Promotes Regeneration of Neuromuscular Synapses in Mice , 2009, Science.

[59]  M. Strong,et al.  Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS) , 2009, Brain Research.

[60]  Yuxin Fan,et al.  Sporadic ALS has compartment-specific aberrant exon splicing and altered cell–matrix adhesion biology , 2009, Human molecular genetics.

[61]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[62]  S. Perrin,et al.  No Benefit from Chronic Lithium Dosing in a Sibling-Matched, Gender Balanced, Investigator-Blinded Trial Using a Standard Mouse Model of Familial ALS , 2009, PloS one.

[63]  P. Anderson,et al.  RNA granules: post-transcriptional and epigenetic modulators of gene expression , 2009, Nature Reviews Molecular Cell Biology.

[64]  Y. Yoneda,et al.  Selective localization of PCBP2 to cytoplasmic processing bodies. , 2009, Biochimica et biophysica acta.

[65]  P. Caroni,et al.  A role for motoneuron subtype–selective ER stress in disease manifestations of FALS mice , 2009, Nature Neuroscience.

[66]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[67]  M. Pericak-Vance,et al.  Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2009, Science.

[68]  M. Bilgen,et al.  Assessing gait impairment following experimental traumatic brain injury in mice , 2009, Journal of Neuroscience Methods.

[69]  M. Zavolan,et al.  miRNA in situ hybridization in formaldehyde and EDC–fixed tissues , 2009, Nature Methods.

[70]  P. Ongusaha,et al.  Prolyl 4-hydroxylation regulates Argonaute 2 stability , 2008, Nature.

[71]  P. Graves,et al.  Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. , 2008, The Biochemical journal.

[72]  Z. Paroo,et al.  A small molecule enhances RNA interference and promotes microRNA processing , 2008, Nature Biotechnology.

[73]  Jack F Kirsch,et al.  Autoinhibition of human dicer by its internal helicase domain. , 2008, Journal of molecular biology.

[74]  T. Stemmler,et al.  A Cytosolic Iron Chaperone That Delivers Iron to Ferritin , 2008, Science.

[75]  B. McConkey,et al.  TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis , 2008, Nature Genetics.

[76]  J. Morris,et al.  TDP‐43 A315T mutation in familial motor neuron disease , 2008, Annals of neurology.

[77]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[78]  P. Anderson,et al.  Stress granules: the Tao of RNA triage. , 2008, Trends in biochemical sciences.

[79]  F. Kano,et al.  Identification of PCBP2, a facilitator of IRES-mediated translation, as a novel constituent of stress granules and processing bodies. , 2008, RNA.

[80]  J. E. Kranz,et al.  Design, power, and interpretation of studies in the standard murine model of ALS , 2008, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[81]  Phillip A. Sharp,et al.  microRNAs: A Safeguard against Turmoil? , 2007, Cell.

[82]  K. Nader,et al.  eIF2α Phosphorylation Bidirectionally Regulates the Switch from Short- to Long-Term Synaptic Plasticity and Memory , 2007, Cell.

[83]  J. Trojanowski,et al.  Absence of heterogeneous nuclear ribonucleoproteins and survival motor neuron protein in TDP-43 positive inclusions in frontotemporal lobar degeneration , 2007, Acta Neuropathologica.

[84]  Anthony K. L. Leung,et al.  Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules , 2006, Proceedings of the National Academy of Sciences.

[85]  Noam Shomron,et al.  Canalization of development by microRNAs , 2006, Nature Genetics.

[86]  Anne Gatignol,et al.  TRBP, a regulator of cellular PKR and HIV‐1 virus expression, interacts with Dicer and functions in RNA silencing , 2005, EMBO reports.

[87]  A. Hinnebusch eIF2α kinases provide a new solution to the puzzle of substrate specificity , 2005, Nature Structural &Molecular Biology.

[88]  Yuriy Gusev,et al.  Real-time expression profiling of microRNA precursors in human cancer cell lines , 2005, Nucleic acids research.

[89]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[90]  Randal J. Kaufman,et al.  Stress granules and processing bodies are dynamically linked sites of mRNP remodeling , 2005, The Journal of cell biology.

[91]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[92]  W. Filipowicz,et al.  Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer , 2004, EMBO reports.

[93]  C. Rossi,et al.  Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression , 2003, Molecular and Cellular Neuroscience.

[94]  P. Anderson,et al.  Dynamic Shuttling of Tia-1 Accompanies the Recruitment of mRNA to Mammalian Stress Granules , 2000, The Journal of cell biology.

[95]  J. Holstege,et al.  Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in Mice Causes Mitochondrial Vacuolization, Axonal Degeneration, and Premature Motoneuron Death and Accelerates Motoneuron Disease in Mice Expressing a Familial Amyotrophic Lateral Sclerosis Mutant SOD1 , 2000, Neurobiology of Disease.

[96]  Wei Li,et al.  RNA-Binding Proteins Tia-1 and Tiar Link the Phosphorylation of Eif-2α to the Assembly of Mammalian Stress Granules , 1999, The Journal of cell biology.

[97]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[98]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[99]  D. Sabatini,et al.  Dissociation of mammalian polyribosomes into subunits by puromycin. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[100]  C. Melo,et al.  MicroRNA biogenesis: dicing assay. , 2014, Methods in molecular biology.

[101]  N. Peláez,et al.  Biological robustness and the role of microRNAs: a network perspective. , 2012, Current topics in developmental biology.

[102]  T. Milman DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration , 2012 .

[103]  C. Milligan,et al.  Isolation and culture of postnatal spinal motoneurons. , 2011, Methods in molecular biology.

[104]  L. Zon,et al.  Cell stem cell. , 2007, Cell stem cell.

[105]  A. Hinnebusch eIF2alpha kinases provide a new solution to the puzzle of substrate specificity. , 2005, Nature structural & molecular biology.

[106]  Brendan MacLean,et al.  Bioinformatics Applications Note Gene Expression Skyline: an Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments , 2022 .