Neocortical inhibitory system.

The neocortex contains two neuron types, excitatory (glutamatergic) pyramidal cells and inhibitory nonpyramidal (GABAergic) cells. GABAergic, inhibitory interneurons are morphologically distinct from excitatory pyramidal cells and account for 20-25 % of all neocortical neurons. Recent studies discovered that besides morphological features, inhibitory interneurons are molecularly and physiologically heterogenous and differ significantly in arrangement and terminations of their axonal endings. In neocortical interneurons, GABA is also co-localized with calcium-binding proteins (parvalbumin, calbindin, calretinin), with neuropeptides and nitric oxide synthase. Axons of GABAergic neurons target distinct domains of pyramidal neurons. Double-bouquet, Martinotti and neurogliaform cells (CB-IR, CR-IR) target distal dendrites of pyramidal neurons and probably regulate the vertical integration of synaptic input along the dendritic tree of pyramids. Basket cells (PV-IR) innervate soma and proximal dendrites, and Chandelier cells (PV-IR) exhibit synaptic contacts on the axon initial segment of pyramidal neurons. GABAergic neocortical interneurons are interconnected by gap junctions. Most often coupling is bidirectional and occurs between interneurons of the same type. Cortical pyramidal neurons derive from the dorsal telencephalon while the majority of interneurons derive from the ganglionic eminences of the ventral telencephalon, and tangentially migrate into cortex. Adult mammalian neurogenesis is not restricted to the hippocampus, but a small number of the new neurons is also generated in the neocortex. New cortical neurons are GABAergic and co-express calbindin and calretinin. Quantitative analysis of selected areas of the neocortex (neuropsychiatric diseases, models of epilepsy, aging) demonstrate a decrease in density of PV-IR and CB-IR neurons but not CR-IR neurons.

[1]  Maria Blatow,et al.  Two calretinin-positive GABAergic cell types in layer 2/3 of the mouse neocortex provide different forms of inhibition. , 2009, Cerebral cortex.

[2]  Josef Syka,et al.  Age-related changes in GAD levels in the central auditory system of the rat , 2009, Experimental Gerontology.

[3]  L. Frishman,et al.  Subcellular compartmentalization of two calcium binding proteins, calretinin and calbindin-28 kDa, in ganglion and amacrine cells of the rat retina , 2008, Molecular vision.

[4]  J. Syka,et al.  Changes in parvalbumin immunoreactivity with aging in the central auditory system of the rat , 2008, Experimental Gerontology.

[5]  J. Lawrence,et al.  Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus , 2008, Trends in Neurosciences.

[6]  H. Cameron,et al.  New Interneurons in the Adult Neocortex: Small, Sparse, but Significant? , 2008, Biological Psychiatry.

[7]  H. Akiyama,et al.  Changes in density of calcium‐binding‐protein‐immunoreactive GABAergic neurons in prefrontal cortex in schizophrenia and bipolar disorder , 2008, Neuropathology : official journal of the Japanese Society of Neuropathology.

[8]  P. Henny,et al.  Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons , 2008, The European journal of neuroscience.

[9]  Xiangrui Li,et al.  Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex , 2008, Brain Research Bulletin.

[10]  Quanxin Wang,et al.  Multiple Distinct Subtypes of GABAergic Neurons in Mouse Visual Cortex Identified by Triple Immunostaining , 2007, Frontiers in neuroanatomy.

[11]  C. Henneberger,et al.  Cajal–Retzius cells in the mouse neocortex receive two types of pre‐ and postsynaptically distinct GABAergic inputs , 2007, The Journal of physiology.

[12]  Takaichi Fukuda,et al.  Structural Organization of the Gap Junction Network in the Cerebral Cortex , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[13]  M. Poo,et al.  Excitatory GABA Action Is Essential for Morphological Maturation of Cortical Neurons In Vivo , 2007, The Journal of Neuroscience.

[14]  Axel Schleicher,et al.  The innervation of parvalbumin‐containing interneurons by VIP‐immunopositive interneurons in the primary somatosensory cortex of the adult rat , 2007, The European journal of neuroscience.

[15]  Gavin P. Reynolds,et al.  The neuronal pathology of schizophrenia: molecules and mechanisms. , 2007, Biochemical Society transactions.

[16]  J. Eilers,et al.  Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurones , 2007, Journal of neurochemistry.

[17]  G. Rajkowska,et al.  GABAergic Neurons Immunoreactive for Calcium Binding Proteins are Reduced in the Prefrontal Cortex in Major Depression , 2007, Neuropsychopharmacology.

[18]  Paul Leonard Gabbott,et al.  Amygdala input monosynaptically innervates parvalbumin immunoreactive local circuit neurons in rat medial prefrontal cortex , 2006, Neuroscience.

[19]  John R Huguenard,et al.  Electrophysiological classification of somatostatin-positive interneurons in mouse sensorimotor cortex. , 2006, Journal of neurophysiology.

[20]  L. Krimer,et al.  Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. , 2006, Cerebral cortex.

[21]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[22]  R. Cruz-Rizzolo,et al.  Distribution of NADPH-diaphorase-positive neurons in the prefrontal cortex of the Cebus monkey , 2006, Brain Research.

[23]  J. DeFelipe,et al.  Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Krsek,et al.  Densities of parvalbumin-immunoreactive neurons in non-malformed hippocampal sclerosis-temporal neocortex and in cortical dysplasias , 2006, Brain Research Bulletin.

[25]  L. Hughes,et al.  Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex , 2005, Neuroscience.

[26]  Patrick R Hof,et al.  Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[27]  D. Lewis,et al.  Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.

[28]  S. Totterdell,et al.  NOS-positive local circuit neurons are exclusively axo-dendritic cells both in the neo- and archicortex of the rat brain , 2005, Brain Research.

[29]  G. Tamás,et al.  Gap-Junctional Coupling between Neurogliaform Cells and Various Interneuron Types in the Neocortex , 2005, The Journal of Neuroscience.

[30]  J. Hablitz,et al.  Horizontal spread of activity in neocortical inhibitory networks. , 2005, Brain research. Developmental brain research.

[31]  G. Tamás,et al.  Lighting the chandelier: new vistas for axo-axonic cells , 2005, Trends in Neurosciences.

[32]  S. Anderson,et al.  Cortical Interneurons and Their Origins , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[33]  S. Hestrin,et al.  Electrical synapses define networks of neocortical GABAergic neurons , 2005, Trends in Neurosciences.

[34]  C. Jeon,et al.  Immunocytochemical localization of nitric oxide synthase-containing neurons in mouse and rabbit visual cortex and co-localization with calcium-binding proteins. , 2005, Molecules and cells.

[35]  E. Soriano,et al.  The Cells of Cajal-Retzius: Still a Mystery One Century After , 2005, Neuron.

[36]  H. Cameron,et al.  New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors , 2005, The Journal of cell biology.

[37]  H. Markram,et al.  Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. , 2004, Cerebral cortex.

[38]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[39]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[40]  F. Michetti,et al.  γ‐aminobutyric acidergic interneuron vulnerability to aging in canine prefrontal cortex , 2004, Journal of neuroscience research.

[41]  C. Iadecola Neurovascular regulation in the normal brain and in Alzheimer's disease , 2004, Nature Reviews Neuroscience.

[42]  A. Mikulecká,et al.  Long-term behavioral and morphological consequences of nonconvulsive status epilepticus in rats , 2004, Epilepsy & Behavior.

[43]  A. Schleicher,et al.  Calbindin‐containing interneurons are a target for VIP‐immunoreactive synapses in rat primary somatosensory cortex , 2004, The Journal of comparative neurology.

[44]  Andreas Burkhalter,et al.  Distinct GABAergic Targets of Feedforward and Feedback Connections Between Lower and Higher Areas of Rat Visual Cortex , 2003, The Journal of Neuroscience.

[45]  K. Campbell,et al.  Tlx Controls Proliferation and Patterning of Lateral Telencephalic Progenitor Domains , 2003, The Journal of Neuroscience.

[46]  David A Lewis,et al.  Pyramidal neuron local axon terminals in monkey prefrontal cortex: differential targeting of subclasses of GABA neurons. , 2003, Cerebral cortex.

[47]  C. Englund,et al.  Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. , 2003, Brain research. Developmental brain research.

[48]  J. Syka,et al.  NADPH-diaphorase-positive neurons in the auditory cortex of young and old rats , 2003, Neuroreport.

[49]  S. Schiffmann,et al.  ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice , 2002, The Cerebellum.

[50]  Alan Peters,et al.  Structural changes that occur during normal aging of primate cerebral hemispheres , 2002, Neuroscience & Biobehavioral Reviews.

[51]  G. Reynolds,et al.  Neuronal calcium-binding proteins and schizophrenia , 2002, Schizophrenia Research.

[52]  Y. Ben-Ari Excitatory actions of gaba during development: the nature of the nurture , 2002, Nature Reviews Neuroscience.

[53]  R. Spreafico,et al.  Alterations of the neocortical GABAergic system in the pilocarpine model of temporal lobe epilepsy: Neuronal damage and immunocytochemical changes in chronic epileptic rats , 2002, Brain Research Bulletin.

[54]  D. Lewis,et al.  Postnatal development of parvalbumin‐ and GABA transporter‐immunoreactive axon terminals in monkey prefrontal cortex , 2002, The Journal of comparative neurology.

[55]  A. Contestabile,et al.  Regional alterations of the NO/NOS system in the aging brain: a biochemical, histochemical and immunochemical study in the rat , 2002, Brain Research.

[56]  H. Markram,et al.  Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. , 2002, Cerebral cortex.

[57]  F. Valverde,et al.  Tangential migration in neocortical development. , 2002, Developmental biology.

[58]  Y. Kawaguchi,et al.  Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex , 2002, Journal of neurocytology.

[59]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[60]  C. Iadecola,et al.  Intrinsic signals and functional brain mapping: caution, blood vessels at work. , 2002, Cerebral cortex.

[61]  C. Gross,et al.  Neurogenesis in Adult Mammals: Some Progress and Problems , 2002, The Journal of Neuroscience.

[62]  A. Burkhalter,et al.  Axo‐axonic synapses formed by somatostatin‐expressing GABAergic neurons in rat and monkey visual cortex , 2002, The Journal of comparative neurology.

[63]  R. Weinberg,et al.  Substance P and nitric oxide signaling in cerebral cortex: Anatomical evidence for reciprocal signaling between two classes of interneurons , 2001, The Journal of comparative neurology.

[64]  O. Marín,et al.  A long, remarkable journey: Tangential migration in the telencephalon , 2001, Nature Reviews Neuroscience.

[65]  J. Brunso-Bechtold,et al.  Age‐related decline of presumptive inhibitory synapses in the sensorimotor cortex as revealed by the physical disector , 2001, The Journal of comparative neurology.

[66]  G. Fishell,et al.  In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. , 2001, Development.

[67]  C. Beasley,et al.  Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity , 2001, Brain Research Bulletin.

[68]  P. Goldman-Rakic,et al.  Prefrontal Microcircuits: Membrane Properties and Excitatory Input of Local, Medium, and Wide Arbor Interneurons , 2001, The Journal of Neuroscience.

[69]  G. Papadopoulos,et al.  Serotoninergic afferents preferentially innervate distinct subclasses of peptidergic interneurons in the rat visual cortex , 2001, Brain Research.

[70]  Takaichi Fukuda,et al.  The dual network of GABAergic interneurons linked by both chemical and electrical synapses: a possible infrastructure of the cerebral cortex , 2000, Neuroscience Research.

[71]  E. Welker,et al.  Neurons immunoreactive for vasoactive intestinal polypeptide in the rat primary somatosensory cortex: Morphology and spatial relationship to barrel‐related columns , 2000, The Journal of comparative neurology.

[72]  F. Benes,et al.  Emerging principles of altered neural circuitry in schizophrenia , 2000, Brain Research Reviews.

[73]  A. Sampson,et al.  Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. , 2000, Archives of general psychiatry.

[74]  H. Kennedy,et al.  Non-uniformity of neocortex: areal heterogeneity of NADPH-diaphorase reactive neurons in adult macaque monkeys. , 2000, Cerebral cortex.

[75]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[76]  S. Hestrin,et al.  A network of fast-spiking cells in the neocortex connected by electrical synapses , 1999, Nature.

[77]  J. DeFelipe Chandelier cells and epilepsy. , 1999, Brain : a journal of neurology.

[78]  G. Elston,et al.  Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey , 1999, The Journal of comparative neurology.

[79]  J. Rossier,et al.  Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex , 1998, The European journal of neuroscience.

[80]  Y. Huh,et al.  Regional changes of NADPH-diaphorase and neuropeptide Y neurons in the cerebral cortex of aged Fischer 344 rats , 1998, Neuroscience Letters.

[81]  J DeFelipe,et al.  Nitric oxide-producing neurons in the neocortex: morphological and functional relationship with intraparenchymal microvasculature. , 1998, Cerebral cortex.

[82]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[83]  J. Morrison,et al.  Life and death of neurons in the aging brain. , 1997, Science.

[84]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[85]  J. DeFelipe,et al.  Synaptic Connections of Calretinin-Immunoreactive Neurons in the Human Neocortex , 1997, The Journal of Neuroscience.

[86]  A. Burkhalter,et al.  Three distinct families of GABAergic neurons in rat visual cortex. , 1997, Cerebral cortex.

[87]  Paul Leonard Gabbott,et al.  Calretinin neurons in human medial prefrontal cortex (areas 24a,b,c, 32′, and 25) , 1997, The Journal of comparative neurology.

[88]  J. DeFelipe,et al.  Altered synaptic circuitry in the human temporal neocortex removed from epileptic patients , 1997, Experimental Brain Research.

[89]  Javier DeFelipe,et al.  Colocalization of parvalbumin and calbindin D-28k in neurons including chandelier cells of the human temporal neocortex , 1997, Journal of Chemical Neuroanatomy.

[90]  Paul Leonard Gabbott,et al.  Local‐circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: Morphology and quantitative distribution , 1997, The Journal of comparative neurology.

[91]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[92]  R G Sola,et al.  Inhibitory neurons in the human epileptogenic temporal neocortex. An immunocytochemical study. , 1996, Brain : a journal of neurology.

[93]  J. DeFelipe,et al.  Colocalization of calbindin D‐28k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex , 1996, The Journal of comparative neurology.

[94]  L. Garey,et al.  NADPH-diaphorase-positive neurons in primate cerebral cortex colocalize with GABA and calcium-binding proteins. , 1996, Cerebral cortex.

[95]  Paul Leonard Gabbott,et al.  Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics , 1996, The Journal of comparative neurology.

[96]  P. Wahle,et al.  Areal Differences of NPY mRNA‐expressing Neurons are Established in the Late Postnatal Rat Visual Cortex In Vivo, but not in Organotypic Cultures , 1995, The European journal of neuroscience.

[97]  Y. Kubota,et al.  Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex , 1994, Brain Research.

[98]  J DeFelipe,et al.  A study of SMI 32‐stained pyramidal cells, parvalbumin‐immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temproal neocortex , 1994, The Journal of comparative neurology.

[99]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[100]  C. Iadecola,et al.  Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? , 1993, Trends in Neurosciences.

[101]  M. Laakso,et al.  Neocortical, hippocampal and septal parvalbumin- and somatostatin-containing neurons in young and aged rats: Correlation with passive avoidance and water maze performance , 1993, Neuroscience.

[102]  C A Sandman,et al.  Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. , 1993, Archives of general psychiatry.

[103]  J. Lund,et al.  Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics , 1993, The Journal of comparative neurology.

[104]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[105]  S. Vincent,et al.  Neuronal NADPH diaphorase is a nitric oxide synthase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[106]  S. Hendry,et al.  GABA neuronal subpopulations in cat primary auditory cortex: co-localization with calcium binding proteins , 1991, Brain Research.

[107]  C. Houser GABA neurons in seizure disorders: A review of immunocytochemical studies , 1991, Neurochemical Research.

[108]  S. Foote,et al.  Corticotropin‐releasing factor immunoreactivity in monkey neocortex: An immunohistochemical analysis , 1989, The Journal of comparative neurology.

[109]  P. Rakić,et al.  Distribution of neuropeptide y‐containing perikarya and axons in various neocortical areas in the macaque monkey , 1989, The Journal of comparative neurology.

[110]  P. Somogyi,et al.  Synaptic connections, axonal and dendritic patterns of neurons immunoreactive for cholecystokinin in the visual cortex of the cat , 1986, Neuroscience.

[111]  E. G. Jones,et al.  Varieties and distribution of non‐pyramidal cells in the somatic sensory cortex of the squirrel monkey , 1975, The Journal of comparative neurology.

[112]  M. Arbib,et al.  Conceptual models of neural organization. , 1974, Neurosciences Research Program bulletin.

[113]  T. Freund,et al.  Perisomatic Inhibition , 2007, Neuron.

[114]  Patrick R Hof,et al.  Life and death of neurons in the aging cerebral cortex. , 2007, International review of neurobiology.

[115]  T. Hua,et al.  AGE-RELATED CHANGES OF GABAergic NEURONS AND ASTROCYTES IN CAT PRIMARY AUDITORY CORTEX , 2006 .

[116]  Edith Hamel,et al.  Cholinergic modulation of the cortical microvascular bed. , 2004, Progress in brain research.

[117]  Prof. Dr. W. Wolfgang Fleischhacker,et al.  Neuropsychopharmacology , 2003, Journal of Neural Transmission. Supplementa.

[118]  E. Cherubini,et al.  Generating diversity at GABAergic synapses. , 2001, Trends in neurosciences.

[119]  Z. Kisvárday,et al.  GABAergic networks of basket cells in the visual cortex. , 1992, Progress in brain research.

[120]  M. Marín‐padilla Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. , 1969, Brain research.

[121]  F. Valverde,et al.  Studies on the Piriform Lobe , 1965 .

[122]  Heinke,et al.  Spike Transmission and Synchrony Detection in Networks of GABAergic Interneurons , 2022 .