Error Expansion of Classical Trapezoidal Rule forComputing Cauchy Principal Value Integral

The composite classical trapezoidal rule for the computation of Cauchy principal value integral with the singular kernel 1/(x−s) is discussed. Based on the investigation of the superconvergence phenomenon, i.e., when the singular point coincides with some priori known point, the convergence rate of the classical trapezoidal rule is higher than the globally one which is the same as the Riemann integral for classical trapezoidal rule. The superconvergence phenomenon of the composite classical trapezoidal rule occurs at certain local coordinate of each subinterval and the corresponding superconvergence error estimate is obtained. Some numerical examples are provided to validate the theoretical analysis.

[1]  Kai Diethelm,et al.  Asymptotically sharp error bounds for a quadrature rule for Cauchy principal value integrals based on piecewise linear interpolation , 1995 .

[2]  Weiwei Sun,et al.  The superconvergence of Newton–Cotes rules for the Hadamard finite-part integral on an interval , 2008, Numerische Mathematik.

[3]  I Lifanov,et al.  On the Numerical Solution of Hypersingular and Singular Integral Equations on the Circle , 2003 .

[4]  Takemitsu Hasegawa,et al.  Uniform approximations to finite Hilbert transform and its derivative , 2004 .

[5]  A. Palamara Orsi,et al.  Spline approximation for Cauchy principal value integrals , 1990 .

[6]  Giovanni Monegato,et al.  Convergence of product formulas for the numerical evaluation of certain two-dimensional Cauchy principal value integrals , 1984 .

[7]  H. Hong,et al.  Review of Dual Boundary Element Methods With Emphasis on Hypersingular Integrals and Divergent Series , 1999 .

[8]  Satya N. Atluri,et al.  A Systematic Approach for the Development of Weakly--Singular BIEs , 2007 .

[9]  Bernd Silbermann,et al.  Numerical analysis for one-dimensional Cauchy singular integral equations , 2000 .

[10]  Philsu Kim,et al.  A quadrature rule of interpolatory type for Cauchy integrals , 2000 .

[11]  S. Amari,et al.  Evaluation of Cauchy Principal-Value Integrals using modified Simpson rules , 1994 .

[12]  G. Behforooz Approximation of Cauchy principal value integrals by piecewise Hermite quartic polynomials by spline , 1992 .

[13]  Giuseppe Mastroianni,et al.  On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals , 1989 .

[14]  Dehao Yu,et al.  The Superconvergence of Certain Two-Dimensional Cauchy Principal Value Integrals , 2011 .

[15]  Philsu Kim,et al.  On the convergence of interpolatory-type quadrature rules for evaluating Cauchy integrals , 2002 .

[16]  Kai Diethelm,et al.  Gaussian quadrature formulae of the third kind for Cauchy principal value integrals: basic properties and error estimates , 1995 .

[17]  Nikolaos I. Ioakimidis,et al.  On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives , 1985 .

[18]  P. Köhler,et al.  On the error of quadrature formulae for Cauchy principal value integrals based on piecewise interpolation , 1997 .

[19]  Peter Linz,et al.  On the approximate computation of certain strongly singular integrals , 1985, Computing.

[20]  Jeng-Tzong Chen,et al.  An integral—differential equation approach for the free vibration of a SDOF system with hysteretic damping , 1999 .

[21]  Kai Diethelm,et al.  Modified compound quadrature rules for strongly singular integrals , 1994, Computing.

[22]  Dongjie Liu,et al.  The superconvergence of the Newton-Cotes rule for Cauchy principal value integrals , 2010, J. Comput. Appl. Math..

[23]  Catterina Dagnino,et al.  On the evaluation of one-dimensional Cauchy principal value integrals by rules based on cubic spline interpolation , 1990, Computing.

[24]  N. Mohankumar,et al.  A Comparison of Some Quadrature Methods for Approximating Cauchy Principal Value Integrals , 1995 .

[25]  Jiming Wu,et al.  Generalized Extrapolation for Computation of Hypersingular Integrals in Boundary Element Methods , 2009 .

[26]  Dehao Yu,et al.  The Superconvergence of Certain Two-Dimensional Hilbert Singular Integrals , 2011 .