Programmed hierarchical patterning of bacterial populations

[1]  Quan Chen,et al.  Engineered Photoactivatable Genetic Switches Based on the Bacterium Phage T7 RNA Polymerase. , 2017, ACS synthetic biology.

[2]  Jeff Hasty,et al.  Quorum Sensing Communication Modules for Microbial Consortia. , 2016, ACS synthetic biology.

[3]  Andrew Phillips,et al.  Orthogonal intercellular signaling for programmed spatial behavior , 2016, Molecular systems biology.

[4]  Andrew Phillips,et al.  Characterization of Intrinsic Properties of Promoters , 2015, ACS synthetic biology.

[5]  R. Weiss,et al.  Synthetic Morphogenesis. , 2016, Cold Spring Harbor perspectives in biology.

[6]  E. Terentjev,et al.  Bacterial growth, detachment and cell size control on polyethylene terephthalate surfaces , 2015, Scientific Reports.

[7]  Matthew R. Bennett,et al.  Emergent genetic oscillations in a synthetic microbial consortium , 2015, Science.

[8]  K. Haynes,et al.  Corrigendum: Can the Natural Diversity of Quorum-Sensing Advance Synthetic Biology? , 2015, Front. Bioeng. Biotechnol..

[9]  J. Sharpe,et al.  Positional information and reaction-diffusion: two big ideas in developmental biology combine , 2015, Development.

[10]  Q. Nie,et al.  Robust and precise morphogen-mediated patterning: trade-offs, constraints and mechanisms , 2015, Journal of The Royal Society Interface.

[11]  David J. Menn,et al.  Quorum-sensing crosstalk-driven synthetic circuits: from unimodality to trimodality. , 2014, Chemistry & biology.

[12]  M. Isalan,et al.  A split intein T7 RNA polymerase for transcriptional AND-logic , 2014, Nucleic acids research.

[13]  James Sharpe,et al.  A unified design space of synthetic stripe-forming networks , 2014, Nature Communications.

[14]  Adam J. Meyer,et al.  A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase , 2014, Molecular systems biology.

[15]  Andrew Phillips,et al.  A computational method for automated characterization of genetic components. , 2014, ACS synthetic biology.

[16]  Lingchong You,et al.  Temporal control of self-organized pattern formation without morphogen gradients in bacteria , 2013, Molecular systems biology.

[17]  Matthew R Bennett,et al.  Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants , 2013, Proceedings of the National Academy of Sciences.

[18]  Christopher A. Voigt,et al.  Genetic programs constructed from layered logic gates in single cells , 2012, Nature.

[19]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[20]  Thomas H. Segall-Shapiro,et al.  Modular control of multiple pathways using engineered orthogonal T7 polymerases , 2012, Nucleic acids research.

[21]  Kenneth Evan Thompson,et al.  SYNZIP Protein Interaction Toolbox: in Vitro and in Vivo Specifications of Heterospecific Coiled-Coil Interaction Domains , 2012, ACS synthetic biology.

[22]  Joachim Goedhart,et al.  Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93% , 2012, Nature Communications.

[23]  Jamie A. Davies,et al.  Mechanisms of Morphogenesis , 2005, Cell.

[24]  H. Salis The ribosome binding site calculator. , 2011, Methods in enzymology.

[25]  Martin Fussenegger,et al.  An engineered mammalian band-pass network , 2010, Nucleic acids research.

[26]  Amy E Keating,et al.  A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering. , 2010, Journal of the American Chemical Society.

[27]  T. Hwa,et al.  Growth Rate-Dependent Global Effects on Gene Expression in Bacteria , 2009, Cell.

[28]  B. Bassler,et al.  Bacterial quorum-sensing network architectures. , 2009, Annual review of genetics.

[29]  N. Barkai,et al.  Robust generation and decoding of morphogen gradients. , 2009, Cold Spring Harbor perspectives in biology.

[30]  Marc Ostermeier,et al.  Morphogen-defined patterning of Escherichia coli enabled by an externally tunable band-pass filter , 2009, Journal of biological engineering.

[31]  Christopher A. Voigt,et al.  A Synthetic Genetic Edge Detection Program , 2009, Cell.

[32]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[33]  Mat E. Barnet,et al.  A synthetic Escherichia coli predator–prey ecosystem , 2008, Molecular systems biology.

[34]  Ron Weiss,et al.  Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium , 2007, Proceedings of the National Academy of Sciences.

[35]  D. Kimelman Mesoderm induction: from caps to chips , 2006, Nature Reviews Genetics.

[36]  S. Basu,et al.  A synthetic multicellular system for programmed pattern formation , 2005, Nature.

[37]  M. Isalan,et al.  Engineering Gene Networks to Emulate Drosophila Embryonic Pattern Formation , 2005, PLoS biology.

[38]  P. Pantazis,et al.  Robust formation of morphogen gradients. , 2004, Physical review letters.

[39]  E. Greenberg,et al.  Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Lian-Hui Zhang,et al.  Specificity and Enzyme Kinetics of the Quorum-quenching N-Acyl Homoserine Lactone Lactonase (AHL-lactonase)* , 2004, Journal of Biological Chemistry.

[41]  Takeharu Nagai,et al.  Shift anticipated in DNA microarray market , 2002, Nature Biotechnology.

[42]  W. Mcallister,et al.  Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. , 2000, Biochemistry.

[43]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes , 1997, Journal of bacteriology.

[44]  J. Walker,et al.  Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. , 1996, Journal of molecular biology.

[45]  E. Makarov,et al.  Transcribing of Escherichia coli genes with mutant T7 RNA polymerases: stability of lacZ mRNA inversely correlates with polymerase speed. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[46]  C. Kurland,et al.  Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction , 1995, Journal of bacteriology.

[47]  M. Dreyfus,et al.  Bacteriophage T7 RNA polymerase travels far ahead of ribosomes in vivo , 1992, Journal of bacteriology.

[48]  E. Coen,et al.  The war of the whorls: genetic interactions controlling flower development , 1991, Nature.

[49]  Paul W. Sternberg,et al.  The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans , 1989, Cell.

[50]  C. Martin,et al.  Processivity of proteolytically modified forms of T7 RNA polymerase. , 1988, Biochemistry.

[51]  C. Somerville,et al.  Genetic control of morphogenesis in Arabidopsis , 1988 .

[52]  C. Richardson,et al.  Enzymatic properties of a proteolytically nicked RNA polymerase of bacteriophage T7. , 1987, The Journal of biological chemistry.

[53]  S W Lin,et al.  Vectors for selective expression of cloned DNAs by T7 RNA polymerase. , 1987, Gene.

[54]  F. Studier,et al.  Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. , 1986, Journal of molecular biology.

[55]  F. Studier,et al.  Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. , 1983, Journal of molecular biology.

[56]  R. Wells,et al.  Recognition and initiation site for four late promoters of phage T7 is a 22-base pair DNA sequence , 1979, Nature.

[57]  M. Rosa Four T7 RNA polymerase promoters contain an identical 23 bp sequence , 1979, Cell.

[58]  A. C. Chang,et al.  Revised Interpretation of the Origin of the pSC101 Plasmid , 1977, Journal of bacteriology.

[59]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[60]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.