Ellipsoidal and Gaussian Kalman Filter Model for Discrete-Time Nonlinear Systems

In this paper, we propose a new technique—called Ellipsoidal and Gaussian Kalman filter—for state estimation of discrete-time nonlinear systems in situations when for some parts of uncertainty, we know the probability distributions, while for other parts of uncertainty, we only know the bounds (but we do not know the corresponding probabilities). Similarly to the usual Kalman filter, our algorithm is iterative: on each iteration, we first predict the state at the next moment of time, and then we use measurement results to correct the corresponding estimates. On each correction step, we solve a convex optimization problem to find the optimal estimate for the system’s state (and the optimal ellipsoid for describing the systems’s uncertainty). Testing our algorithm on several highly nonlinear problems has shown that the new algorithm performs the extended Kalman filter technique better—the state estimation technique usually applied to such nonlinear problems.

[1]  F. Schweppe Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .

[2]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[3]  Benjamin Noack,et al.  State Estimation for Distributed Systems with Stochastic and Set-membership Uncertainties , 2014 .

[4]  V. Kreinovich Computational Complexity and Feasibility of Data Processing and Interval Computations , 1997 .

[5]  I. Neumann,et al.  Recursive least-squares estimation in case of interval observation data , 2011 .

[6]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2005, Autom..

[7]  D. Bertsekas,et al.  On the minimax reachability of target sets and target tubes , 1971 .

[8]  E. Walter,et al.  Exact recursive polyhedral description of the feasible parameter set for bounded-error models , 1989 .

[9]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[10]  A. Vicino,et al.  Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..

[11]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[12]  V. Kreinovich,et al.  Experimental uncertainty estimation and statistics for data having interval uncertainty. , 2007 .

[13]  Matthias Althoff,et al.  Safety assessment for stochastic linear systems using enclosing hulls of probability density functions , 2009, 2009 European Control Conference (ECC).

[14]  Eric Walter,et al.  Ellipsoidal parameter or state estimation under model uncertainty , 2004, Autom..

[15]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[16]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[17]  Luise Blank,et al.  State Estimation Analysed as Inverse Problem , 2007 .

[18]  Hansjörg Kutterer,et al.  Using Zonotopes for Overestimation-Free Interval Least-Squares–Some Geodetic Applications , 2005, Reliab. Comput..

[19]  Boris Polyak,et al.  Multi-Input Multi-Output Ellipsoidal State Bounding , 2001 .

[20]  Jens-André Paffenholz,et al.  Sequential Monte Carlo Filtering for Nonlinear GNSS Trajectories , 2012 .

[21]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[22]  S. F. Schmidt APPLICATION OF STATISTICAL FILTER THEORY TO THE OPTIMAL ESTIMATION OF POSITION AND VELOCITY ON BOARD A CIRCUMLUNAR VEHICLE , 2022 .

[23]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[24]  Bruce A. McElhoe,et al.  An Assessment of the Navigation and Course Corrections for a Manned Flyby of Mars or Venus , 1966, IEEE Transactions on Aerospace and Electronic Systems.

[25]  Jens-André Paffenholz,et al.  Geo-Referencing of a Multi-Sensor System Based on Set-Membership Kalman Filter , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[26]  H. Alkhatib,et al.  Alternative Nonlinear Filtering Techniques in Geodesy for Dual State and Adaptive Parameter Estimation , 2015 .

[27]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[28]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[29]  C. Combastel A State Bounding Observer for Uncertain Non-linear Continuous-time Systems based on Zonotopes , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[30]  Didier Dumur,et al.  Zonotopic guaranteed state estimation for uncertain systems , 2013, Autom..

[31]  H. Witsenhausen Sets of possible states of linear systems given perturbed observations , 1968 .

[32]  John B. Moore,et al.  Optimal State Estimation , 2006 .