A comparison study of binary and non-binary LDPC codes decoding

Non binary LDPC codes are promising error correcting codes which have increasingly raised interest in the last few years. This paper addresses some comparisons for short and moderate blocklengths between binary and non binary LDPC codes from different points of view, including error correction performance, complexity cost and possible adaptation and optimization opportunities. It shows a performance advantage of non binary codes up to 0.5 dB when only using GF(4) instead of GF(2), and up to 0.75 dB when using GF(16). Despite the large additional complexity induced by non binary decoding, these codes are very promising since adapted complexity reduction techniques are already investigated and show interesting results. Some analysis on decoding behavior of non binary LDPC decoder is also given in this paper. Such comparisons and analysis are interesting to gain insights on non binary LDPC codes and to derive guidelines for their optimization.

[1]  A.I.V. Casado,et al.  Improving LDPC Decoders via Informed Dynamic Scheduling , 2007, 2007 IEEE Information Theory Workshop.

[2]  Hideki Imai,et al.  Reduced complexity iterative decoding of low-density parity check codes based on belief propagation , 1999, IEEE Trans. Commun..

[3]  Orange Labs,et al.  Scheduling Strategies for Non-Binary LDPC Codes , 2009 .

[4]  Nazanin Rahnavard,et al.  Nonuniform error correction using low-density parity-check codes , 2005, IEEE Transactions on Information Theory.

[5]  D. Mackay,et al.  Low density parity check codes over GF(q) , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[6]  Ido Kanter,et al.  Parallel vs. Sequential Belief Propagation Decoding of LDPC Codes over GF(q) and Markov Sources , 2006, ArXiv.

[7]  Pierre Penard,et al.  Selective-Update Decoding of Non-Binary LDPC Codes , 2010, 2010 IEEE 71st Vehicular Technology Conference.

[8]  Jean-Luc Danger,et al.  Lambda-Min Decoding Algorithm of Regular and Irregular LDPC Codes , 2003 .

[9]  Valentin Savin,et al.  Min-Max decoding for non binary LDPC codes , 2008, 2008 IEEE International Symposium on Information Theory.

[10]  David Declercq,et al.  Extended MinSum Algorithm for Decoding LDPC Codes over GF ( q ) , .

[11]  Henk Wymeersch,et al.  Log-domain decoding of LDPC codes over GF(q) , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[12]  William P. Marnane,et al.  FPGA Implementations of LDPC over GF(2m) Decoders , 2007, 2007 IEEE Workshop on Signal Processing Systems.

[13]  Matthew C. Davey,et al.  Error-Correction using Low Density Parity Check Codes , 1999 .

[14]  David Declercq,et al.  Using binary images of non binary LDPC codes to improve overall performance , 2006 .

[15]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[16]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[17]  Rüdiger L. Urbanke,et al.  Density Evolution, Thresholds and the Stability Condition for Non-binary LDPC Codes , 2005, ArXiv.

[18]  David Declercq,et al.  Extended minsum algorithm for decoding LDPC codes over GF(/sub q/ , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[19]  D. Mackay,et al.  Low-Density Parity Check Codes over , 1998 .

[20]  Chia-Yu Lin,et al.  Switching activity reducing layered decoding algorithm for LDPC codes , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[21]  T. Etzion,et al.  Which codes have cycle-free Tanner graphs? , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[22]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[23]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[24]  H. Wymeersch,et al.  Log-domain decoding of LDPC codes over , .

[25]  Deepak Gilra,et al.  A class of non-binary LDPC codes , 2004 .

[26]  Simon Litsyn,et al.  Lazy scheduling forLDPC decoding , 2007, IEEE Communications Letters.

[27]  Juntan Zhang,et al.  Shuffled belief propagation decoding , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[28]  Simon Litsyn,et al.  Efficient Serial Message-Passing Schedules for LDPC Decoding , 2007, IEEE Transactions on Information Theory.

[29]  Hongxin Song,et al.  Reduced-complexity decoding of Q-ary LDPC codes for magnetic recording , 2003 .

[30]  Gerhard Fettweis,et al.  Reduced Complexity LDPC Decoding using Forced Convergence , 2004 .