Analysis and Construction of Correctors

A post-processing function is used to reduce or eliminate statistical weaknesses of physical random number generators. The output bias of a n-bit input m-bit output function is examined, when the input bits are biased. For this purpose, the definition of (n, m, t)-corrector is introduced; many characterizations and properties of a corrector are presented. It appears as a generalization of the notion of resilience for a vectorial function. Several constructions of correctors from old correctors are also proposed.

[1]  D. Stinson,et al.  Resilient functions and large sets of orthogonal arrays , 2022 .

[2]  Claude Carlet,et al.  Vectorial Boolean Functions for Cryptography , 2006 .

[3]  James L. Massey,et al.  A spectral characterization of correlation-immune combining functions , 1988, IEEE Trans. Inf. Theory.

[4]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[5]  Pascale Charpin,et al.  Highly Nonlinear Resilient Functions Through Disjoint Codes in Projective Spaces , 2005, Des. Codes Cryptogr..

[6]  Kaoru Kurosawa,et al.  Highly Nonlinear t-resilient Functions , 1997, J. Univers. Comput. Sci..

[7]  Ronen Shaltiel,et al.  True Random Number Generators Secure in a Changing Environment , 2003, CHES.

[8]  P. Sarkar,et al.  Improved construction of nonlinear resilient S-boxes , 2002, IEEE Transactions on Information Theory.

[9]  Claude Carlet,et al.  On Correlation-Immune Functions , 1991, CRYPTO.

[10]  Serge Vaudenay,et al.  How Far Can We Go Beyond Linear Cryptanalysis? , 2004, ASIACRYPT.

[11]  Yuliang Zheng,et al.  Cryptographically resilient functions , 1997, IEEE Trans. Inf. Theory.

[12]  Tetsu Iwata,et al.  Bounds on Fixed Input/Output Length Post-processing Functions for Biased Physical Random Number Generators , 2009, Selected Areas in Cryptography.

[13]  Gilles Brassard,et al.  Privacy Amplification by Public Discussion , 1988, SIAM J. Comput..

[14]  Thomas Siegenthaler,et al.  Correlation-immunity of nonlinear combining functions for cryptographic applications , 1984, IEEE Trans. Inf. Theory.

[15]  Douglas R. Stinson,et al.  Orthogonal Arrays, Resilient Functions, Error-Correcting Codes, and Linear Programming Bounds , 1996, SIAM J. Discret. Math..

[16]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[17]  Markus Dichtl Bad and Good Ways of Post-processing Biased Physical Random Numbers , 2007, FSE.

[18]  Oded Goldreich,et al.  The bit extraction problem or t-resilient functions , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[19]  Douglas R. Stinson,et al.  An infinite class of counterexamples to a conjecture concerning nonlinear resilient functions , 2004, Journal of Cryptology.

[20]  Manuel Blum Independent unbiased coin flips from a correlated biased source—A finite state markov chain , 1986, Comb..

[21]  Patrick Lacharme,et al.  Post-Processing Functions for a Biased Physical Random Number Generator , 2008, FSE.

[22]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[23]  Manuel Blum,et al.  Independent unbiased coin flips from a correlated biased source—A finite state markov chain , 1984, Comb..

[24]  Mitsuru Matsui,et al.  Linear Cryptanalysis Method for DES Cipher , 1994, EUROCRYPT.