An Overview of Shape Memory Alloy-Coupled Actuators and Robots.

The one-dimensional deformation of shape memory alloy (SMA) wires and springs can be implemented into different types of functional structures with three-dimensional deformations. These structures can be classified based on the type of structure and how the SMA element has been implemented into the following categories: rigid mechanical joints, semi-rigid flexural hinges, SMA elements externally attached to a soft structure, and embedded into the soft structure. These structures have a wide range of properties and implementation requirements, and they have been used to produce a variety of robots with rigid and soft motions. The different research efforts to develop actuators and robots related to each type of structure are presented along with their respective strengths and weaknesses. A model is then developed to discuss the performance and applicability of SMA wires versus SMA springs for actuators with a polymeric matrix to see the effect of each type of SMA on the selection of design parameters. A comparison of the different types of structures and the applicability of different types of SMA elements for different types of structures is then presented.

[1]  K. Kuribayashi A New Actuator of a Joint Mechanism Using TiNi Alloy Wire , 1986 .

[2]  K. Tanaka A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT: ONE-DIMENSIONAL TENSILE BEHAVIOR , 1986 .

[3]  K. Kuribayashi Millimeter-sized joint actuator using a shape memory alloy , 1989 .

[4]  Paolo Dario,et al.  Shape memory alloy micromotors for direct-drive actuation of dexterous artificial hands , 1989 .

[5]  Katsutoshi Kuribayashi,et al.  Improvement of the Response of an SMA Actuator Using a Temperature Sensor , 1991, Int. J. Robotics Res..

[6]  C. Sun,et al.  One-dimensional constitutive relation for shape-memory alloy-reinforced composite lamina , 1993 .

[7]  C. A. Rogers,et al.  Design of Shape Memory Alloy Springs With Applications in Vibration Control , 1993 .

[8]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[9]  Guojun Sun,et al.  Bending of shape-memory alloy-reinforced composite beam , 1995, Journal of Materials Science.

[10]  William R. Walsh,et al.  Mechanical properties of bat wing membrane skin , 1996 .

[11]  Mohsen Shahinpoor,et al.  Design, prototyping and computer simulations of a novel large bending actuator made with a shape memory alloy contractile wire , 1997 .

[12]  Christian Boller,et al.  Analysis of Controlled Beam Deflections Using SMA Wires , 1997 .

[13]  Constantinos Mavroidis,et al.  Shape memory alloy actuated robot prostheses: initial experiments , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[14]  U. Icardi Large bending actuator made with SMA contractile wires: theory, numerical simulation and experiments , 2001 .

[15]  C. Mavroidis,et al.  Experimental Nonlinear Dynamics of a Shape Memory Alloy Wire Bundle Actuator , 2001 .

[16]  Constantinos Mavroidis,et al.  Mechanical design of a shape memory alloy actuated prosthetic hand. , 2002, Technology and health care : official journal of the European Society for Engineering and Medicine.

[17]  Arata Masuda,et al.  An overview of vibration and seismic applications of NiTi shape memory alloy , 2002 .

[18]  Paolo Dario,et al.  A SMA actuated artificial earthworm , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[19]  Manfred Kohl,et al.  Shape Memory Microactuators , 2004 .

[20]  M. Elahinia Effect of System Dynamics on Shape Memory Alloy Behavior and Control , 2004 .

[21]  Gangbing Song,et al.  Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks , 2004 .

[22]  L. M. Sim,et al.  Through-the-thickness mechanical properties of smart quasi-isotropic carbon/epoxy laminates , 2004 .

[23]  José L. Pons,et al.  Emerging Actuator Technologies: A Micromechatronic Approach , 2005 .

[24]  Cedric Cocaud,et al.  Position control of an experimental robotic arm driven by artificial muscles based on shape memory alloys , 2006 .

[25]  K. Breuer,et al.  Direct measurements of the kinematics and dynamics of bat flight , 2006, Bioinspiration & biomimetics.

[26]  Paolo Dario,et al.  Development of a biomimetic miniature robotic crawler , 2006, Auton. Robots.

[27]  Amor Jnifene,et al.  Design and control of a shape memory alloy based dexterous robot hand , 2007 .

[28]  E.T. Esfahani,et al.  Stable Walking Pattern for an SMA-Actuated Biped , 2007, IEEE/ASME Transactions on Mechatronics.

[29]  H. Naguib,et al.  A Study on the Thermomechanical Properties of Shape Memory Alloys-based Actuators used in Artificial Muscles , 2007 .

[30]  Wei Du,et al.  Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion , 2008 .

[31]  K Yang,et al.  A compact and flexible actuator based on shape memory alloy springs , 2008 .

[32]  Yee Harn Teh,et al.  Fast, accurate force and position control of shape memory alloy actuators , 2008 .

[33]  Kai Xiao,et al.  A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin , 2008 .

[34]  H. Harry Asada,et al.  Synergistic design of a humanoid hand with hybrid DC motor - SMA array actuators embedded in the palm , 2008, 2008 IEEE International Conference on Robotics and Automation.

[35]  A. Tzes,et al.  Design of an anthropomorphic prosthetic hand driven by Shape Memory Alloy actuators , 2008, 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[36]  P. R. Ouyang,et al.  Micro-motion devices technology: The state of arts review , 2008 .

[37]  Roy Featherstone,et al.  An Architecture for Fast and Accurate Control of Shape Memory Alloy Actuators , 2008, Int. J. Robotics Res..

[38]  Jian Chen,et al.  Quantifying the complexity of bat wing kinematics. , 2008, Journal of theoretical biology.

[39]  B Mazzolai,et al.  Design of a biomimetic robotic octopus arm , 2009, Bioinspiration & biomimetics.

[40]  Robert J. Wood,et al.  Micro artificial muscle fiber using NiTi spring for soft robotics , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[41]  Gabriele Gilardi,et al.  A shape memory alloy based tendon-driven actuation system for biomimetic artificial fingers, part II: modelling and control , 2009, Robotica.

[42]  Peter Lloyd,et al.  Design, manufacture and evaluation of bending behaviour of composite beams embedded with SMA wires , 2009 .

[43]  Jian Li,et al.  A micro biomimetic manta ray robot fish actuated by SMA , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[44]  Edward J. Park,et al.  A shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, part I: design and evaluation , 2009, Robotica.

[45]  Beom-Seok Jung,et al.  Fabrication of smart structure using shape memory alloy wire embedded hybrid composite. Herstellung intelligenter Strukturen mittels in hybride Verbunde eingbetteter Drähte auf Basis einer Formgedächtnislegierung , 2010 .

[46]  Sung-hoon Ahn,et al.  Fabrication of a smart air intake structure using shape memory alloy wire embedded composite , 2010 .

[47]  S. Priya,et al.  A bio-inspired shape memory alloy composite (BISMAC) actuator , 2010 .

[48]  Kyu-Jin Cho,et al.  Finger-sized climbing robot using artificial proleg , 2010, 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[49]  K. Breuer,et al.  The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift production , 2010, Journal of Experimental Biology.

[50]  Zhenlong Wang,et al.  Initial Design of a Biomimetic Cuttlefish Robot Actuated by SMA Wires , 2011, 2011 Third International Conference on Measuring Technology and Mechatronics Automation.

[51]  Yong Du,et al.  A novel soft robot with three locomotion modes , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[52]  Kyu-Jin Cho,et al.  Design & analysis a flytrap robot using bi-stable composite , 2011, 2011 IEEE International Conference on Robotics and Automation.

[53]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[54]  Colin Smith,et al.  Working principle of bio-inspired shape memory alloy composite actuators , 2010 .

[55]  Shashank Priya,et al.  A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators , 2011, Bioinspiration & biomimetics.

[56]  Nguyen Trong Tai,et al.  Adaptive proportional?integral?derivative tuning sliding mode control for a shape memory alloy actuator , 2011 .

[57]  Yong Du,et al.  Preliminary research of a novel soft robot with three locomotion modes , 2011 .

[58]  Sung-Hoon Ahn,et al.  Manufacturing of inchworm robot using shape memory alloy (SMA) embedded composite structure , 2011 .

[59]  Huai-Ti Lin,et al.  Towards a biomorphic soft robot: Design constraints and solutions , 2012, 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[60]  Kyu-Jin Cho,et al.  Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model , 2012 .

[61]  Kyu-Jin Cho,et al.  Flea-Inspired Catapult Mechanism for Miniature Jumping Robots , 2012, IEEE Transactions on Robotics.

[62]  Matteo Cianchetti,et al.  A general method for the design and fabrication of shape memory alloy active spring actuators , 2012 .

[63]  Jie Yang,et al.  A Novel Implementation of a Flexible Robotic Fin Actuated by Shape Memory Alloy , 2012 .

[64]  J Colorado,et al.  Corrigendum: Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators , 2012, Bioinspiration & biomimetics.

[65]  Paolo Dario,et al.  Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.

[66]  Sung-Hyuk Song,et al.  Smart soft composite: An integrated 3D soft morphing structure using bend-twist coupling of anisotropic materials , 2012 .

[67]  Sung-Hoon Ahn,et al.  A turtle-like swimming robot using a smart soft composite (SSC) structure , 2012 .

[68]  Cícero da Rocha Souto,et al.  Artificial biometric finger driven by shape-memory alloy wires. , 2013, Artificial organs.

[69]  Fei Li,et al.  Design and development of starfish-like robot: Soft bionic platform with multi-motion using SMA actuators , 2013, 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[70]  Sung-Hoon Ahn,et al.  Numerical simulation and verification of a curved morphing composite structure with embedded shape memory alloy wire actuators , 2013 .

[71]  R. Wood,et al.  Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[72]  Sung-Hoon Ahn,et al.  Fabrication of 3D soft morphing structure using shape memory alloy (SMA) wire/polymer skeleton composite , 2013 .

[73]  Kyu-Jin Cho,et al.  Omega-Shaped Inchworm-Inspired Crawling Robot With Large-Index-and-Pitch (LIP) SMA Spring Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[74]  Takuya Umedachi,et al.  Highly deformable 3-D printed soft robot generating inching and crawling locomotions with variable friction legs , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[75]  Sung-Hoon Ahn,et al.  Locomotion of inchworm-inspired robot made of smart soft composite (SSC) , 2014, Bioinspiration & biomimetics.

[76]  P. Vlachos,et al.  Flexible Margin Kinematics and Vortex Formation of Aurelia aurita and Robojelly , 2014, PloS one.

[77]  Kin Huat Low,et al.  Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs , 2014 .

[78]  Sung-Hoon Ahn,et al.  Design and Performance Evaluation of Soft Morphing Car-Spoiler , 2014 .

[79]  Kyu-Jin Cho,et al.  Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface , 2014, Bioinspiration & biomimetics.

[80]  Takuya Umedachi,et al.  Design of a 3D-printed soft robot with posture and steering control , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[81]  Jie Yang,et al.  Locomotion modeling of an actinomorphic soft robot actuated by SMA springs , 2014, 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014).

[82]  Cecilia Laschi,et al.  Bioinspired Soft Actuation System Using Shape Memory Alloys , 2014 .

[83]  Kyu-Jin Cho,et al.  Self-Folding Origami Using Torsion Shape Memory Alloy Wire Actuators , 2014 .

[84]  Sung-Hoon Ahn,et al.  Cross-shaped twisting structure using SMA-based smart soft composite , 2014 .

[85]  Anthony Tzes,et al.  Development and Control of a Multifunctional Prosthetic Hand with Shape Memory Alloy Actuators , 2015, J. Intell. Robotic Syst..

[86]  M Calisti,et al.  Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot , 2015, Bioinspiration & biomimetics.

[87]  R. Wood,et al.  Jumping on water: Surface tension–dominated jumping of water striders and robotic insects , 2015, Science.

[88]  Dimitris P. Tsakiris,et al.  Multi-arm robotic swimmer actuated by antagonistic SMA springs , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[89]  Sung-hoon Ahn,et al.  Smart soft composite actuator with shape retention capability using embedded fusible alloy structures , 2015 .

[90]  Sung-Hoon Ahn,et al.  A shape memory alloy–based soft morphing actuator capable of pure twisting motion , 2015 .

[91]  Chang Li,et al.  Design and Fabrication of a Soft Robotic Hand With Embedded Actuators and Sensors , 2015 .

[92]  Sung-Hoon Ahn,et al.  SMA-based smart soft composite structure capable of multiple modes of actuation , 2015 .

[93]  Jae-Won Choi,et al.  Anthropomorphic finger antagonistically actuated by SMA plates , 2015, Bioinspiration & biomimetics.

[94]  Erik D. Engeberg,et al.  Finger-like manipulator driven by antagonistic nickel-titanium shape memory alloy actuators , 2015, 2015 International Conference on Advanced Robotics (ICAR).

[95]  Hyun-Taek Lee,et al.  Shape memory alloy (SMA)-based head and neck immobilizer for radiotherapy , 2015, J. Comput. Des. Eng..

[96]  Kyu-Jin Cho,et al.  A large-stroke shape memory alloy spring actuator using double-coil configuration , 2015 .

[97]  Kyu-Jin Cho,et al.  A self-deployable origami structure with locking mechanism induced by buckling effect , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[98]  Sung-Hyuk Song,et al.  A smart soft actuator using a single shape memory alloy for twisting actuation , 2015 .

[99]  Sung-Hoon Ahn,et al.  Fabrication of wrist-like SMA-based actuator by double smart soft composite casting , 2015 .

[100]  Shiwu Zhang,et al.  Dynamic characteristics of planar bending actuator embedded with shape memory alloy , 2015 .

[101]  Sung-Hoon Ahn,et al.  Smart Phone Robot Made of Smart Soft Composite (SSC) , 2015 .

[102]  Sung-Hoon Ahn,et al.  Deployable Soft Composite Structures , 2016, Scientific Reports.

[103]  Sung-Hoon Ahn,et al.  Woven type smart soft composite for soft morphing car spoiler , 2016 .

[104]  Wei Wang,et al.  Kirigami/Origami‐Based Soft Deployable Reflector for Optical Beam Steering , 2017 .