Polarization-dependent optomechanics mediated by chiral microresonators

Chirality is one of the most prominent and intriguing aspects of nature, from spiral galaxies down to aminoacids. Despite the wide range of living and non-living, natural and artificial chiral systems at different scales, the origin of chirality-induced phenomena is often puzzling. Here we assess the onset of chiral optomechanics, exploiting the control of the interaction between chiral entities. We perform an experimental and theoretical investigation of the simultaneous optical trapping and rotation of spherulite-like chiral microparticles. Due to their shell structure (Bragg dielectric resonator), the microparticles function as omnidirectional chiral mirrors yielding highly polarization-dependent optomechanical effects. The coupling of linear and angular momentum, mediated by the optical polarization and the microparticles chiral reflectance, allows for fine tuning of chirality-induced optical forces and torques. This offers tools for optomechanics, optical sorting and sensing and optofluidics.

[1]  L. Blinov,et al.  Structure and Properties of Liquid Crystals , 2010 .

[2]  A. Lakhtakia,et al.  An essential difference between dielectric mirrors and chiral mirrors , 2005 .

[3]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[4]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[5]  P. Denti,et al.  Radiation torque on nonspherical particles in the transition matrix formalism. , 2006, Optics express.

[6]  A. Mazzulla,et al.  Chiral Self‐Assembled Solid Microspheres: A Novel Multifunctional Microphotonic Device , 2011, Advanced materials.

[7]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[8]  H. Rubinsztein-Dunlop,et al.  Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.

[9]  M. Humar,et al.  3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. , 2010, Optics express.

[10]  Saulius Juodkazis,et al.  High-efficiency optical transfer of torque to a nematic liquid crystal droplet , 2003 .

[11]  W. Liang,et al.  Modal analysis of Bragg onion resonators. , 2004, Optics letters.

[12]  T. Verbiest,et al.  Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook , 2013, Advanced materials.

[13]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[14]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[15]  Yiqiao Tang,et al.  Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light , 2011, Science.

[16]  Mark G. Raizen,et al.  Millikelvin cooling of an optically trapped microsphere in vacuum , 2011, 1101.1283.

[17]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[18]  Kishan Dholakia,et al.  Supplementary Figure S1: Numerical Psd Simulation. Example Numerical Simulation of The , 2022 .

[19]  Mark Dickinson,et al.  Laser manipulation in liquid crystals: an approach to microfluidics and micromachines , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  N. V. Madhusudana,et al.  Laser induced rotation of trapped chiral and achiral nematic droplets , 2010, 1002.1204.

[21]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[22]  Jonathan Leach,et al.  An optically driven pump for microfluidics. , 2006, Lab on a chip.

[23]  Stephen M. Barnett,et al.  Discriminatory optical force for chiral molecules , 2014 .

[24]  Karen Volke-Sepúlveda,et al.  Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers. , 2013, Lab on a chip.

[25]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[26]  Steven M Block,et al.  Optical tweezers study life under tension. , 2011, Nature photonics.

[27]  H. Engelkamp,et al.  Selection of supramolecular chirality by application of rotational and magnetic forces. , 2012, Nature chemistry.

[28]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[29]  David A. Williams,et al.  Stratified dust grains in the interstellar medium – I. An accurate computational method for calculating their optical properties , 2008 .

[30]  S. Neale,et al.  All-optical control of microfluidic components using form birefringence , 2005, Nature materials.

[31]  Norman R. Heckenberg,et al.  Approximate and exact modeling of optical trapping , 2010, NanoScience + Engineering.

[32]  R. Di Leonardo,et al.  Hydrodynamic synchronization of light driven microrotors. , 2012, Physical review letters.

[33]  P. Denti,et al.  Optical trapping of nonspherical particles in the T-matrix formalism. , 2007, Optics express.

[34]  Stephen M. Morris,et al.  Liquid-crystal lasers , 2010 .

[35]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[36]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[37]  D. Pine,et al.  Chiral colloidal clusters , 2008, Nature.

[38]  M J Padgett,et al.  Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. , 2003, Physical review letters.

[39]  G. Volpe,et al.  Simulation of a Brownian particle in an optical trap , 2013 .

[40]  Lachlan J. Gibson,et al.  Spatially-resolved rotational microrheology with an optically-trapped sphere , 2013, Scientific Reports.

[41]  M. Dickinson,et al.  Continuously rotating chiral liquid crystal droplets in a linearly polarized laser trap. , 2008, Optics express.

[42]  Spin and orbital angular momenta of light reflected from a cone , 2011, 1205.5897.

[43]  E. Brasselet,et al.  Spin controlled optical radiation pressure. , 2013 .

[44]  J. Ignacio Cirac,et al.  Toward quantum superposition of living organisms , 2009, 0909.1469.

[45]  G. Wagnire On Chirality and the Universal Asymmetry , 2007 .

[46]  I. Smalyukh,et al.  Optical manipulation of colloids and defect structures in anisotropic liquid crystal fluids , 2011 .

[47]  Lukas Novotny,et al.  Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.

[48]  A. Alú,et al.  Twisted optical metamaterials for planarized ultrathin broadband circular polarizers , 2012, Nature Communications.

[49]  S. Weiner,et al.  Biomineralization: Crystals, asymmetry and life , 2001, Nature.

[50]  H. Rubinsztein-Dunlop,et al.  Symmetry and the generation and measurement of optical torque , 2008, 0812.2039.

[51]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[52]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.