Multi-frequency Phase Unwrapping from Noisy Data: Adaptive Local Maximum Likelihood Approach

The paper introduces a new approach to absolute phase estimation from frequency diverse wrapped observations. We adopt a discontinuity preserving nonparametric regression technique, where the phase is reconstructed based on a local maximum likelihood criterion. It is shown that this criterion, applied to the multifrequency data, besides filtering the noise, yields a 2***Q -periodic solution, where Q > 1 is an integer. The filtering algorithm is based on local polynomial (LPA) approximation for the design of nonlinear filters (estimators) and the adaptation of these filters to the unknown spatially smoothness of the absolute phase. Depending on the value of Q and of the original phase range, we may obtain complete or partial phase unwrapping. In the latter case, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [1]. Simulations give evidence that the proposed method yields state-of-the-art performance, enabling phase unwrapping in extraordinary difficult situations when all other algorithms fail.

[1]  A. Murat Tekalp,et al.  A Stochastic Framework for Rate-Distortion Optimized Video Coding Over Error-Prone Networks , 2007, IEEE Transactions on Image Processing.

[2]  José M. Bioucas-Dias,et al.  Phase Unwrapping via Graph Cuts , 2005, IEEE Transactions on Image Processing.

[3]  Vito Pascazio,et al.  Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters , 2002, IEEE Trans. Image Process..

[4]  Xiang-Gen Xia,et al.  Phase Unwrapping and A Robust Chinese Remainder Theorem , 2007, IEEE Signal Processing Letters.

[5]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[6]  Dennis C. Ghiglia,et al.  Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software , 1998 .

[7]  Jaakko Astola,et al.  Absolute phase estimation: adaptive local denoising and global unwrapping. , 2008, Applied optics.

[8]  Pramod Rastogi,et al.  Moving ahead with phase , 2007 .

[9]  Qian Kemao,et al.  Two-dimensional windowed Fourier transform for fringe pattern analysis: Principles, applications and implementations , 2007 .

[10]  Salah Karout,et al.  Two-dimensional phase unwrapping , 2007 .

[11]  L. C. Graham,et al.  Synthetic interferometer radar for topographic mapping , 1974 .

[12]  R.C. Agarwal,et al.  Number theory in digital signal processing , 1980, Proceedings of the IEEE.

[13]  M Servin,et al.  Phase unwrapping with a regularized phase-tracking system. , 1998, Applied optics.

[14]  José M. N. Leitão,et al.  The ZπM algorithm: a method for interferometric image reconstruction in SAR/SAS , 2002, IEEE Trans. Image Process..

[15]  Charles M. Rader,et al.  Number theory in digital signal processing , 1979 .

[16]  M Servin,et al.  Phase unwrapping through demodulation by use of the regularized phase-tracking technique. , 1999, Applied optics.

[17]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[18]  Jaakko Astola,et al.  Phase Local Approximation (PhaseLa) Technique for Phase Unwrap From Noisy Data , 2008, IEEE Transactions on Image Processing.

[19]  Dana Ron,et al.  Chinese remaindering with errors , 1999, STOC '99.

[20]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[21]  Chung Ki Hong,et al.  Least-squares phase estimation with multiple parameters in phase-shifting electronic speckle pattern interferometry. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  R. Goldstein,et al.  Topographic mapping from interferometric synthetic aperture radar observations , 1986 .

[23]  Malgorzata Kujawinska,et al.  Modern Fringe Pattern Analysis in Interferometry , 2001 .

[24]  Jaakko Astola,et al.  Local Approximation Techniques in Signal and Image Processing (SPIE Press Monograph Vol. PM157) , 2006 .