Retinitis pigmentosa: understanding the clinical presentation, mechanisms and treatment options

Retinitis pigmentosa (RP) is a leading cause of human blindness due to degeneration of retinal photoreceptor cells. Causes of retinal degeneration include defects in the visual pigment, defects in the proteins important for photoreceptor function or in enzymes involved in initiating visual transduction. Despite the diversity of genetic mutations identified in inherited forms of retinal dystrophy, there is a common end result of photoreceptor death and functional blindness. In this review, pertinent anatomical and physiological pathways involved in RP and the underlying genetic mutations are outlined, including a discussion on the inheritance patterns revealed by advances in molecular biological techniques. Characteristics of progression rates of visual field loss and current management options will provide useful clinical guidelines for the management of patients with RP.

[1]  W. Baehr,et al.  Inherited Retinal Diseases: Vertebrate Animal Models , 2006 .

[2]  A. Vingrys,et al.  Retinal function loss after monocarboxylate transport inhibition. , 2004, Investigative ophthalmology & visual science.

[3]  S. Kelly,et al.  Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. , 2003, Investigative ophthalmology & visual science.

[4]  S. Kelly,et al.  Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. , 2003, Investigative ophthalmology & visual science.

[5]  R. Mcinnes,et al.  Progress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations. , 2003, Annual review of neuroscience.

[6]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[7]  G. Rouleau,et al.  Novel RPGR mutations with distinct retinitis pigmentosa phenotypes in French-Canadian families. , 2003, American journal of ophthalmology.

[8]  B. Jones,et al.  Retinal remodeling triggered by photoreceptor degenerations , 2003, The Journal of comparative neurology.

[9]  B. Jones,et al.  Neural remodeling in retinal degeneration , 2003, Progress in Retinal and Eye Research.

[10]  G. Fishman,et al.  Comparison of the clinical expression of retinitis pigmentosa associated with rhodopsin mutations at codon 347 and codon 23. , 2003, American journal of ophthalmology.

[11]  D. Oprian,et al.  Opsin activation as a cause of congenital night blindness , 2003, Nature Neuroscience.

[12]  R. Koenig Bardet-Biedl syndrome and Usher syndrome. , 2003, Developments in ophthalmology.

[13]  A. Vingrys,et al.  The contribution of glycolytic and oxidative pathways to retinal photoreceptor function. , 2003, Investigative ophthalmology & visual science.

[14]  M. Wilkinson,et al.  Inhibitory action of diltiazem on voltage-gated calcium channels in cone photoreceptors. , 2003, Experimental eye research.

[15]  D. Organisciak,et al.  Susceptibility to retinal light damage in transgenic rats with rhodopsin mutations. , 2003, Investigative ophthalmology & visual science.

[16]  S. Wu,et al.  Adler's Physiology of the Eye , 2002 .

[17]  N. Katsanis,et al.  Human genetics and disease: Beyond Mendel: an evolving view of human genetic disease transmission , 2002, Nature Reviews Genetics.

[18]  R. Radu,et al.  Isomerization and Oxidation of Vitamin A in Cone-Dominant Retinas A Novel Pathway for Visual-Pigment Regeneration in Daylight , 2002, Neuron.

[19]  Rahul S. Rajan,et al.  A Rhodopsin Mutant Linked to Autosomal Dominant Retinitis Pigmentosa Is Prone to Aggregate and Interacts with the Ubiquitin Proteasome System* , 2002, The Journal of Biological Chemistry.

[20]  K. Palczewski,et al.  Vaccination with recoverin, a cancer‐associated retinopathy antigen, induces autoimmune retinal dysfunction and tumor cell regression in mice , 2002, European journal of immunology.

[21]  M. Sandberg,et al.  Absence of photoreceptor rescue with D-cis-diltiazem in the rd mouse. , 2002, Investigative ophthalmology & visual science.

[22]  C. Turner,et al.  Reproductive choices for couples with haemophilia , 2002, Haemophilia : the official journal of the World Federation of Hemophilia.

[23]  T. Aleman,et al.  Naturally occurring rhodopsin mutation in the dog causes retinal dysfunction and degeneration mimicking human dominant retinitis pigmentosa , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Marianne Haim,et al.  Epidemiology of retinitis pigmentosa in Denmark. , 2002, Acta ophthalmologica Scandinavica. Supplement.

[25]  T. Maeda,et al.  Retinal dysfunction in cancer-associated retinopathy is improved by Ca(2+) antagonist administration and dark adaptation. , 2001, Investigative ophthalmology & visual science.

[26]  A. Fawzi,et al.  The role of perinatal stress in simplex retinitis pigmentosa: evidence from surveys in Australia and the United States. , 2001, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[27]  J. Keltner,et al.  Clinical and Immunologic Characteristics of Melanoma-Associated Retinopathy Syndrome: Eleven New Cases and a Review of 51 Previously Published Cases , 2001, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[28]  K. Palczewski,et al.  Confronting Complexity: the Interlink of Phototransduction and Retinoid Metabolism in the Vertebrate Retina , 2001, Progress in Retinal and Eye Research.

[29]  R. Lund,et al.  Cell Transplantation as a Treatment for Retinal Disease , 2001, Progress in Retinal and Eye Research.

[30]  Jean Bennett,et al.  Gene therapy restores vision in a canine model of childhood blindness , 2001, Nature Genetics.

[31]  T. Aleman,et al.  Calcium channel blocker D-cis-diltiazem does not slow retinal degeneration in the PDE6B mutant rcd1 canine model of retinitis pigmentosa. , 2001, Molecular vision.

[32]  S. Jacobson,et al.  Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa , 2000, Nature Genetics.

[33]  D. Puro,et al.  Energy metabolism in human retinal Müller cells. , 2000, Investigative ophthalmology & visual science.

[34]  P. Sieving,et al.  The Effect of Calcium Channel Blocker Diltiazem on Photoreceptor Degeneration in the Rhodopsin Pro23His Rat , 2000 .

[35]  J. Phelan,et al.  A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. , 2000, Molecular vision.

[36]  M. Lavail,et al.  Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. , 2000, Human molecular genetics.

[37]  D. Valle,et al.  Correction of ornithine accumulation prevents retinal degeneration in a mouse model of gyrate atrophy of the choroid and retina. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Milam,et al.  Cancer-associated retinopathy. , 1999, Archives of ophthalmology.

[39]  J. Stone,et al.  Mechanisms of photoreceptor death and survival in mammalian retina , 1999, Progress in Retinal and Eye Research.

[40]  M. Kalloniatis,et al.  Amino acid neurochemistry of the vertebrate retina , 1999, Progress in Retinal and Eye Research.

[41]  J. Sahel,et al.  Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse , 1999, Nature Medicine.

[42]  B. Rosner,et al.  Safety of <7500 RE (<25000 IU) vitamin A daily in adults with retinitis pigmentosa. , 1999, The American journal of clinical nutrition.

[43]  R. Sharma,et al.  Management of hereditary retinal degenerations: present status and future directions. , 1999, Survey of ophthalmology.

[44]  M. Wienrich,et al.  The Royal College of Surgeons Rat: An Animal Model for Inherited Retinal Degeneration with a Still Unknown Genetic Defect , 1998, Cells Tissues Organs.

[45]  K. Valter,et al.  Photoreceptor dystrophy in the RCS rat: roles of oxygen, debris, and bFGF. , 1998, Investigative ophthalmology & visual science.

[46]  P. Pelaia,et al.  Does hyperbaric oxygen (HBO) delivery rescue retinal photoreceptors in retinitis pigmentosa? , 1998, Documenta Ophthalmologica.

[47]  W. Hauswirth,et al.  Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa , 1998, Nature Medicine.

[48]  M. Tsacopoulos,et al.  Trafficking of molecules and metabolic signals in the retina , 1998, Progress in Retinal and Eye Research.

[49]  S. Wu,et al.  Amino acid neurotransmitters in the retina: a functional overview , 1998, Vision Research.

[50]  C. Morgans,et al.  Localization and properties of voltage-gated calcium channels in cone photoreceptors of Tupaia belangeri , 1998, Visual Neuroscience.

[51]  M. Lavail,et al.  Protection of mouse photoreceptors by survival factors in retinal degenerations. , 1998, Investigative ophthalmology & visual science.

[52]  M. Kalloniatis,et al.  Neurochemical development of the degenerating rat retina , 1997, The Journal of comparative neurology.

[53]  J. Stone,et al.  Tissue oxygen during a critical developmental period controls the death and survival of photoreceptors. , 1997, Investigative ophthalmology & visual science.

[54]  M. Kalloniatis,et al.  Localisation of amino acid neurotransmitters during postnatal development of the rat retina , 1997, The Journal of comparative neurology.

[55]  A. Y. Chow,et al.  Subretinal electrical stimulation of the rabbit retina , 1997, Neuroscience Letters.

[56]  M. Kalloniatis,et al.  Neurochemical architecture of the normal and degenerating rat retina , 1996, The Journal of comparative neurology.

[57]  C. M. Kemp,et al.  Photoreceptor function in heterozygotes with insertion or deletion mutations in the RDS gene. , 1996, Investigative ophthalmology & visual science.

[58]  R. Weleber The Cuban experience. False hope for a cure for retinitis pigmentosa. , 1996, Archives of ophthalmology.

[59]  P. Magistretti,et al.  Metabolic coupling between glia and neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  D. Pow,et al.  Direct immunocytochemical evidence for the transfer of glutamine from glial cells to neurons: Use of specific antibodies directed against thed-stereoisomers of glutamate and glutamine , 1996, Neuroscience.

[61]  K. A. Rich,et al.  Effects of Müller cell disruption on mouse photoreceptor cell development. , 1995, Experimental eye research.

[62]  M. Tsacopoulos,et al.  Lactate released by Muller glial cells is metabolized by photoreceptors from mammalian retina , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  D. Hood,et al.  Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation. , 1995, Investigative ophthalmology & visual science.

[64]  L. Donoso,et al.  Recent advances in the molecular genetics of retinitis pigmentosa , 1995, Current opinion in ophthalmology.

[65]  T. Dryja,et al.  Mutation spectrum of the gene encoding the beta subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[66]  A. Harvey,et al.  Radial and tangential dispersion patterns in the mouse retina are cell-class specific. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[67]  John G. Flannery,et al.  The rd mouse story: Seventy years of research on an animal model of inherited retinal degeneration , 1994, Progress in Retinal and Eye Research.

[68]  R. Lolley The rd gene defect triggers programmed rod cell death. The Proctor Lecture. , 1994, Investigative ophthalmology & visual science.

[69]  T. Dryja,et al.  Digenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. , 1994, Science.

[70]  M. Tso,et al.  Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. , 1994, Investigative ophthalmology & visual science.

[71]  Algis J. Vingrya,et al.  Diagnosis of Defective Colour Vision , 1994 .

[72]  J. Nathans,et al.  Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Y. Hao,et al.  Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[74]  T. Dryja,et al.  Transgenic mice with a rhodopsin mutation (Pro23His): A mouse model of autosomal dominant retinitis pigmentosa , 1992, Neuron.

[75]  D. Bok,et al.  Complete rescue of photoreceptor dysplasia and degeneration in transgenic retinal degeneration slow (rds) mice , 1992, Neuron.

[76]  J. Flannery,et al.  Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodiesterase beta subunit. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[77]  A. Ames,et al.  Energy metabolism of rabbit retina as related to function: high cost of Na+ transport , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  A. J. Roman,et al.  Abnormal rod dark adaptation in autosomal dominant retinitis pigmentosa with proline-23-histidine rhodopsin mutation. , 1992, American journal of ophthalmology.

[79]  L. Stryer Visual excitation and recovery. , 1991, The Journal of biological chemistry.

[80]  B. Rosner,et al.  Ocular findings in patients with autosomal dominant retinitis pigmentosa and rhodopsin, proline-347-leucine. , 1991, American journal of ophthalmology.

[81]  M. Tso,et al.  Amelioration of light-induced retinal degeneration by a calcium overload blocker. Flunarizine. , 1991, Archives of ophthalmology.

[82]  M. Lavail,et al.  Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor , 1990, Nature.

[83]  G. Chader,et al.  Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[84]  J E Turner,et al.  Inherited retinal dystrophy in the RCS rat: prevention of photoreceptor degeneration by pigment epithelial cell transplantation. , 1988, Experimental eye research.

[85]  D. Puro The Retina. An Approachable Part of the Brain , 1988 .

[86]  R. H. Steinberg,et al.  Monitoring communications between photoreceptors and pigment epithelial cells: effects of "mild" systemic hypoxia. Friedenwald lecture. , 1987, Investigative ophthalmology & visual science.

[87]  T T McMahon,et al.  X-linked recessive retinitis pigmentosa. Clinical characteristics of carriers. , 1986, Archives of ophthalmology.

[88]  B. Rosner,et al.  Natural course of retinitis pigmentosa over a three-year interval. , 1985, American journal of ophthalmology.

[89]  K Naka,et al.  Signal transmission in the catfish retina. I. Transmission in the outer retina. , 1985, Journal of neurophysiology.

[90]  E. E. Fesenko,et al.  Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment , 1985, Nature.

[91]  G. Zeilmaker,et al.  Development and degeneration of retina in rds mutant mice: light and electron microscopic observations in experimental chimaeras. , 1984, Experimental eye research.

[92]  D. Bok,et al.  Immunocytochemical localization of cellular retinol binding protein in the rat retina. , 1984, Investigative ophthalmology & visual science.

[93]  J. Hollyfield,et al.  Differential sensitivity of protein synthesis in human retina to a phosphodiesterase inhibitor and cyclic nucleotides. , 1984, Current eye research.

[94]  D. Farber,et al.  Cone visual cell degeneration in ground squirrel retina: disruption of morphology and cyclic nucleotide metabolism by lodoacetic acid. , 1983, Investigative ophthalmology & visual science.

[95]  J. Dimattio,et al.  Reduced ocular glucose transport and increased non-electrolyte permeability in rats with retinal degeneration (RCS). , 1983, Experimental eye research.

[96]  J. C. Saari,et al.  Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina , 1983, The Journal of cell biology.

[97]  G. Fishman,et al.  A genetic analysis of retinitis pigmentosa. , 1983, The British journal of ophthalmology.

[98]  J. Dowling,et al.  Retinitis Pigmentosa: A Symposium on Terminology and Methods of Examination , 1983 .

[99]  K. Naka,et al.  The cells horizontal cells talk to , 1982, Vision Research.

[100]  M. Jay On the heredity of retinitis pigmentosa. , 1982, The British journal of ophthalmology.

[101]  B. S. Winkler Glycolytic and oxidative metabolism in relation to retinal function , 1981, The Journal of general physiology.

[102]  J. Hollyfield,et al.  Sensitivity of photoreceptors to elevated levels of cGMP in the human retina. , 1980, Investigative ophthalmology & visual science.

[103]  L. Stramm,et al.  Glucose uptake by normal and dystrophic rat retinas and ciliary bodies. , 1980, Experimental eye research.

[104]  J. Boughman,et al.  Population genetic studies of retinitis pigmentosa. , 1980, American journal of human genetics.

[105]  R. Massof,et al.  Rod sensitivity relative to cone sensitivity in retinitis pigmentosa. , 1979, Investigative ophthalmology & visual science.

[106]  R. Massof,et al.  Bilateral symmetry of vision disorders in typical retinitis pigmentosa. , 1979, The British journal of ophthalmology.

[107]  G. Fishman Retinitis Pigmentosa: Genetic Percentages , 1978 .

[108]  D. Farber,et al.  Cyclic GMP accumulation causes degeneration of photoreceptor cells: simulation of an inherited disease. , 1977, Science.

[109]  M. Sandberg,et al.  Blue and green cone mechanisms in retinitis pigmentosa. , 1977, Investigative ophthalmology & visual science.

[110]  R. J. Mullen,et al.  Inherited retinal dystrophy: primary defect in pigment epithelium determined with experimental rat chimeras. , 1976, Science.

[111]  W. Stell,et al.  Goldfish retina: functional polarization of cone horizontal cell dendrites and synapses , 1975, Science.

[112]  A Kaneko,et al.  Receptive field organization of bipolar and amacrine cells in the goldfish retina , 1973, The Journal of physiology.

[113]  R. Lolley,et al.  Changes in levels of ATPase activity in developing retinae of normal (DBA) and mutant (C3H) mice. , 1972, Vision research.

[114]  R. Lolley CHANGES IN GLUCOSE AND ENERGY METABOLISM IN VIVO IN DEVELOPING RETINAE FROM VISUALLY‐COMPETENT (DBA/1J) AND MUTANT (C3H/HeJ) MICE 1 , 1972, Journal of neurochemistry.

[115]  D. Bok,et al.  THE ROLE OF THE PIGMENT EPITHELIUM IN THE ETIOLOGY OF INHERITED RETINAL DYSTROPHY IN THE RAT , 1971, The Journal of cell biology.

[116]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[117]  C. Graymore Possible Significance of the Isoenzymes of Lactic Dehydrogenase in the Retina of the Rat , 1964, Nature.

[118]  V. Bonavita,et al.  NEUROCHEMICAL STUDIES ON THE INHERITED RETINAL DEGENERATION OF THE RAT. I. LACTATE DEHYDROGENASE IN THE DEVELOPING RETINA. , 1963, Vision research.

[119]  H. W. Reading,et al.  The metabolism of the dystrophic retina—I: Comparative studies on the glucose metabolism of the developing rat retina, normal and dystrophic , 1962 .

[120]  J. Brotherton Studies on the metabolism of the rat retina with special reference to retinitis pigmentosa. I. Anaerobic glycolysis. , 1962, Experimental eye research.

[121]  J. Brotherton Studies on the metabolism of the rat retina with special reference to retinitis pigmentosa. II. Amino acid content as shown by chromatography. , 1962, Experimental eye research.

[122]  D TOUSSAINT,et al.  Retinal vascular patterns. IV. Diabetic retinopathy. , 1961, Archives of ophthalmology.

[123]  Retinitis pigmentosa,et al.  RETINITIS PIGMENTOSA , 1941, The Lancet.

[124]  Irina Klimanskaya,et al.  Retinal pigment epithelium. , 2006, Methods in enzymology.

[125]  M. Kalloniatis,et al.  Mapping photoreceptor and postreceptoral labelling patterns using a channel permeable probe (agmatine) during development in the normal and RCS rat retina. , 2002, Visual neuroscience.

[126]  P. Sieving,et al.  Human melanoma-associated retinopathy (MAR) antibodies alter the retinal ON-response of the monkey ERG in vivo. , 2000, Investigative ophthalmology & visual science.

[127]  A. Fawzi,et al.  Autoimmune retinopathy: patients with antirecoverin immunoreactivity and panretinal degeneration. , 2000, Archives of ophthalmology.

[128]  P. Tam,et al.  Cell Lineage Analysis , 2000 .

[129]  P. Tam,et al.  Cell lineage analysis. X-inactivation mosaics. , 2000, Methods in molecular biology.

[130]  N. Yoshimura,et al.  Caspaselike proteases activated in apoptotic photoreceptors of Royal College of Surgeons rats. , 1999, Investigative ophthalmology & visual science.

[131]  P. D. de Jong,et al.  Retinitis pigmentosa: defined from a molecular point of view. , 1999, Survey of ophthalmology.

[132]  S. Beck,et al.  Phenotype in retinol deficiency due to a hereditary defect in retinol binding protein synthesis. , 1999, Investigative ophthalmology & visual science.

[133]  M. Humayun,et al.  Artificial vision , 1998, Eye.

[134]  B. Hoefflinger,et al.  The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. , 1997, Ophthalmic research.

[135]  J. V Chan,et al.  Prenatal diagnosis of common single gene disorders by DNA technology. , 1997, Hong Kong medical journal = Xianggang yi xue za zhi.

[136]  B. Rosner,et al.  Evaluation of patients with retinitis pigmentosa receiving electric stimulation, ozonated blood, and ocular surgery in Cuba. , 1996, Archives of ophthalmology.

[137]  D D Clowes,et al.  A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. , 1993, Archives of ophthalmology.

[138]  B. Rosner,et al.  Ocular findings in patients with autosomal dominant retinitis pigmentosa and a rhodopsin gene defect (Pro-23-His). , 1991, Archives of ophthalmology.

[139]  Robert W. Massof,et al.  First order dynamics of visual field loss in retinitis pigmentosa , 1990 .

[140]  D. Farber,et al.  CYCLIC NUCLEOTIDES IN RETINAL FUNCTION AND DEGENERATION , 1986 .

[141]  P. Witkovsky,et al.  Chapter 7 Neuron — Glia interaction in the brain and retina , 1985 .

[142]  I. Constable,et al.  The retinal oxygen profile in cats. , 1983, Investigative ophthalmology & visual science.

[143]  Bird Ac Management of retinitis pigmentosa--summary. , 1983 .

[144]  A. Bird Management of retinitis pigmentosa--summary. , 1983, Transactions of the ophthalmological societies of the United Kingdom.

[145]  Pearlman Jt Mathematical models of retinitis pigmentosa: a study of the rate of progress in the different genetic forms. , 1979, Transactions of the American Ophthalmological Society.

[146]  M. Marmor,et al.  The Retinal pigment epithelium , 1979 .