Phytoplankton community dynamics during late spring coccolithophore blooms at the continental margin of the Celtic Sea (North East Atlantic, 2006–2008)

[1]  W. Vyverman,et al.  Release of dissolved carbohydrates by Emiliania huxleyi and formation of transparent exopolymer particles depend on algal life cycle and bacterial activity. , 2013, Environmental microbiology.

[2]  T. Tyrrell,et al.  The influence of lithogenic material on particulate inorganic carbon measurements of coccolithophores in the Bay of Biscay , 2012 .

[3]  F. Aires,et al.  Impact of the inundation occurrence on the deep convection at continental scale from satellite observations and modeling experiments , 2011 .

[4]  L. Chou,et al.  The utilization of polysaccharides by heterotrophic bacterioplankton in the Bay of Biscay (North Atlantic Ocean) , 2011 .

[5]  Joanna J. Waniek,et al.  Spring coccolithophore production and dispersion in the temperate eastern North Atlantic Ocean , 2011 .

[6]  P. Falkowski,et al.  Competitive dynamics in two species of marine phytoplankton under non-equilibrium conditions , 2011 .

[7]  B. Delille,et al.  Biogeochemistry and carbon mass balance of a coccolithophore bloom in the northern Bay of Biscay (June 2006) , 2011 .

[8]  Stuart C. Painter,et al.  The COPAS’08 expedition to the Patagonian Shelf:physical and environmental conditions during the 2008 coccolithophore bloom , 2010 .

[9]  S. De Monte,et al.  Fluid dynamical niches of phytoplankton types , 2010, Proceedings of the National Academy of Sciences.

[10]  H. Ploug,et al.  Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates , 2010 .

[11]  R. Van Grieken,et al.  Biogeochemical study of a coccolithophore bloom in the northern Bay of Biscay (NE Atlantic Ocean) in June 2004 , 2010 .

[12]  Stuart C. Painter,et al.  Summertime trends in pelagic biogeochemistry at the Porcupine Abyssal Plain study site in the northeast Atlantic , 2010 .

[13]  A. Kemp,et al.  Spatio-temporal changes in the distribution of phytopigments and phytoplanktonic groups at the Porcupine Abyssal Plain (PAP) site , 2010 .

[14]  Roman Stocker,et al.  Chemoattraction to Dimethylsulfoniopropionate Throughout the Marine Microbial Food Web , 2010, Science.

[15]  G. Tarran,et al.  Coccolithophore dynamics in non‐bloom conditions during late summer in the central Iceland Basin (July‐August 2007) , 2010 .

[16]  M. Edwards,et al.  Marine plankton phenology and life history in a changing climate: current research and future directions , 2010, Journal of plankton research.

[17]  B. Delille,et al.  Dissolved inorganic carbon dynamics and air‐sea carbon dioxide fluxes during coccolithophore blooms in the northwest European continental margin (northern Bay of Biscay) , 2010 .

[18]  P. Boyd,et al.  Environmental control of open‐ocean phytoplankton groups: Now and in the future , 2010 .

[19]  U. Passow,et al.  Utilization of organic nutrients by coccolithophores , 2010 .

[20]  M. Behrenfeld,et al.  Abandoning Sverdrup's Critical Depth Hypothesis on phytoplankton blooms. , 2010, Ecology.

[21]  P. Holligan,et al.  Internal tidal mixing as a control on continental margin ecosystems , 2009 .

[22]  M. Ohman,et al.  Lagrangian studies of phytoplankton growth and grazing relationships in a coastal upwelling ecosystem off Southern California , 2009 .

[23]  George A. Jackson,et al.  Effects of phytoplankton community on production, size, and export of large aggregates: A world‐ocean analysis , 2009 .

[24]  C. Brown,et al.  Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom , 2009 .

[25]  K. Sabbe,et al.  Abundance and size distribution of transparent exopolymer particles (TEP) in a coccolithophorid bloom in the northern Bay of Biscay , 2009 .

[26]  S. Strom,et al.  Inter-strain differences in nitrogen use by the coccolithophore Emiliania huxleyi, and consequences for predation by a planktonic ciliate , 2009 .

[27]  R. Grieken,et al.  Organic surface coating on coccolithophores - Emiliania huxleyi: Its determination and implication in the marine carbon cycle , 2009 .

[28]  Paul G. Falkowski,et al.  The role of nutricline depth in regulating the ocean carbon cycle , 2008, Proceedings of the National Academy of Sciences.

[29]  C. Moulin,et al.  Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view , 2008 .

[30]  I. Berman‐Frank,et al.  Seasonal dynamics of the endosymbiotic, nitrogen-fixing cyanobacterium Richelia intracellularis in the eastern Mediterranean Sea , 2008, The ISME Journal.

[31]  M. Thyssen,et al.  Sub meso scale phytoplankton distribution in the North East Atlantic surface waters determined with an automated flow cytometer , 2008 .

[32]  Elena Litchman,et al.  The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. , 2007, Ecology letters.

[33]  P. Holligan,et al.  Spring‐neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer , 2007 .

[34]  Jens Schröter,et al.  Modelling carbon overconsumption and the formation of extracellular particulate organic carbon , 2007 .

[35]  S. Turner,et al.  Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling , 2007 .

[36]  W. Balch,et al.  Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export , 2007 .

[37]  U. Passow,et al.  Factors influencing the sinking of POC and the efficiency of the biological carbon pump , 2007 .

[38]  I. Zondervan The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—A review , 2007 .

[39]  G. Jackson,et al.  Small Phytoplankton and Carbon Export from the Surface Ocean , 2007, Science.

[40]  M. Latasa Improving estimations of phytoplankton class abundances using CHEMTAX , 2007 .

[41]  Ian S. Robinson,et al.  Effect of meteorological conditions on interannual variability in timing and magnitude of the spring bloom in the Irminger Basin, North Atlantic , 2006 .

[42]  P. C. Reid,et al.  Coccolithophore bloom size variation in response to the regional environment of the subarctic North Atlantic , 2006 .

[43]  J. Blanchot,et al.  Temporal variability in phytoplankton pigments, picoplankton and coccolithophores along a transect through the North Atlantic and tropical southwestern Pacific , 2006 .

[44]  George A. Jackson,et al.  The evolution and termination of an iron‐induced mesoscale bloom in the northeast subarctic Pacific , 2005 .

[45]  T. Tyrrell,et al.  Nitrate : phosphate ratios and Emiliania huxleyi blooms , 2005 .

[46]  K. Furuya,et al.  Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean , 2005 .

[47]  L. Guillou,et al.  PIGMENT SUITES AND TAXONOMIC GROUPS IN PRASINOPHYCEAE 1 , 2004 .

[48]  P. Falkowski,et al.  Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups , 2004 .

[49]  E. Berdalet,et al.  Routine quantification of phytoplankton groups— microscopy or pigment analyses? , 2004 .

[50]  J. Garrido,et al.  Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy , 2004 .

[51]  B. Brahamsha,et al.  Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism , 2004 .

[52]  C. Brussaard,et al.  Viral Control of Phytoplankton Populations—a Review1 , 2004, The Journal of eukaryotic microbiology.

[53]  D. Harbour,et al.  Using HPLC pigment analysis to investigate phytoplankton taxonomy: the importance of knowing your species , 2004, Helgoland Marine Research.

[54]  B. Delille,et al.  Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment , 2004 .

[55]  Michael R. Landry,et al.  Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems , 2004 .

[56]  Marti J. Anderson,et al.  Generalized discriminant analysis based on distances , 2003 .

[57]  F. Rodríguez,et al.  Phytoplankton and pigment distributions in an anticyclonic slope water oceanic eddy (SWODDY) in the southern Bay of Biscay , 2003 .

[58]  U. Passow Transparent exopolymer particles (TEP) in aquatic environments , 2002 .

[59]  U. Passow Production of transparent exopolymer particles (TEP) by phyto- and bacterioplankton , 2002 .

[60]  Elaine S. Fileman,et al.  Microplankton community structure and the impact of microzooplankton grazing during an Emiliania huxleyi bloom, off the Devon coast , 2002, Journal of the Marine Biological Association of the United Kingdom.

[61]  B. Quéguiner,et al.  Spatial variability of phytoplankton composition and biomass on the eastern continental shelf of the Bay of Biscay (north-east Atlantic Ocean). Evidence for a bloom of Emiliania huxleyi (Prymnesiophyceae) in spring 1998 , 2002 .

[62]  Jörg Bollmann,et al.  Techniques for quantitative analyses of calcareous marine phytoplankton , 2002 .

[63]  M. Brzezinski,et al.  The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter , 2001 .

[64]  S. Gibb,et al.  Intra-class variability in the carbon, pigment and biomineral content of prymnesiophytes and diatoms , 2000 .

[65]  D. Slezak,et al.  Nutrient uptake and alkaline phosphatase (ec 3:1:3:1) activity of emiliania huxleyi (PRYMNESIOPHYCEAE) during growth under n and p limitation in continuous cultures , 2000 .

[66]  L. Schlüter,et al.  The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios , 2000 .

[67]  R. Bidigare,et al.  Cell cycle and physiological characteristics of Synechococcus (WH7803) in chemostat culture , 1999 .

[68]  L. Beaufort,et al.  Coccolithophorids on the continental slope of the Bay of Biscay – production, transport and contribution to mass fluxes , 1999 .

[69]  I. Joint,et al.  Early spring bloom phytoplankton-nutrient dynamics at the Celtic Sea Shelf Edge , 1999 .

[70]  Manfred Ehrhardt,et al.  Methods of seawater analysis , 1999 .

[71]  U. Passow,et al.  The role of surface‐active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater , 1998 .

[72]  Emilio Marañón,et al.  The hydrography and biology of a bloom of the coccolithophorid Emiliania huxleyi in the northern North Sea , 1998 .

[73]  P. Hargraves Identifying Marine Phytoplankton , 1998 .

[74]  S. Henson,et al.  The use of amides and other organic nitrogen sources by the phytoplankton Emiliania huxleyi , 1997 .

[75]  T. Smayda,et al.  What is a bloom? A commentary , 1997 .

[76]  S. Wright,et al.  CHEMTAX - a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton , 1996 .

[77]  P. Harrison,et al.  EDTA suppresses the growth of oceanic phytoplankton from the Northeast Subarctic Pacific , 1996 .

[78]  J. Cullen,et al.  PHYSIOLOGICAL AND OPTICAL PROPERTIES OF RHIZOSOLENIA FORMOSA (BACILLARIOPHYCEAE) IN THE CONTEXT OF OPEN‐OCEAN VERTICAL MIGRATION 1 , 1996 .

[79]  Toby Tyrrell,et al.  A modelling study of Emiliania huxleyi in the NE atlantic , 1996 .

[80]  G. Bratbak,et al.  Viral control of Emiliania huxleyi blooms , 1996 .

[81]  T. Tyrrell,et al.  Importance of light for the formation of algal blooms by Emiliania huxleyi , 1996 .

[82]  Alice L. Alldredge,et al.  A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP) , 1995 .

[83]  W. Sunda,et al.  Iron uptake and growth limitation in oceanic and coastal phytoplankton , 1995 .

[84]  S. Myklestad Release of extracellular products by phytoplankton with special emphasis on polysaccharides , 1995 .

[85]  C. Brown,et al.  Coccolithophorid blooms in the global ocean , 1994 .

[86]  M. S. Finch,et al.  A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic , 1993 .

[87]  G. Johnsen,et al.  BIO‐OPTICAL CHARACTERISTICS AND PHOTOADAPTIVE RESPONSES IN THE TOXIC AND BLOOM‐FORMING DINOFLAGELLATES GYRODINIUM AUREOLUM, GYMNODINIUM GALATHEANUM, AND TWO STRAINS OF PROROCENTRUM MINIMUM 1 , 1993 .

[88]  Michael Knappertsbusch,et al.  A model system approach to biological climate forcing : The example of Emiliania huxleyi , 1993 .

[89]  D. L. Aksnes,et al.  Silicate as regulating nutrient in phytoplankton competition , 1992 .

[90]  J. Garrido,et al.  Influence of injection conditions in reversed-phase high-performance liquid chromatography of chlorophylls and carotenoids , 1991 .

[91]  M. Silver,et al.  Primary production, sinking fluxes and the microbial food web , 1988 .

[92]  I. Joint,et al.  Seasonal Production Of Photosynthetic Picoplankton And Nanoplankton In The Celtic Sea , 1986 .

[93]  B. Delille,et al.  Particle export during a bloom of Emiliania huxleyi in the North-West European continental margin , 2013 .

[94]  T. Patterson,et al.  Deep Sea Research Part II: Topical Studies in Oceanography , 2013 .

[95]  Zoe V. Finkel,et al.  Phytoplankton in a changing world: cell size and elemental stoichiometry , 2010 .

[96]  Raymond N. Gorley,et al.  PERMANOVA+ for PRIMER. Guide to software and statistical methods , 2008 .

[97]  R. Bidigare,et al.  Analysis of Algal Pigments by High-Performance Liquid Chromatography , 2005 .

[98]  R. G. Barlowa,et al.  Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean , 2002 .

[99]  G. Tarran,et al.  Dimethyl sulphide biogeochemistry within a coccolithophore bloom (DISCO): An overview , 2002 .

[100]  G. Tarran,et al.  Virus dynamics in a coccolithophore-dominated bloom in the North Sea , 2002 .

[101]  P. I. Miller,et al.  Pelagic production at the Celtic Sea shelf break , 2001 .

[102]  J. Huthnance,et al.  Physical structures, advection and mixing in the region of Goban spur , 2001 .

[103]  S. Wakeham,et al.  A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals , 2001 .

[104]  Stephanie Dutkiewicz,et al.  Meteorological modulation of the North Atlantic spring bloom , 2001 .

[105]  X. Irigoien,et al.  Phytoplankton pigment chemotaxonomy of the northeastern Atlantic , 2001 .

[106]  S. Wright,et al.  High-resolution HPLC system for chlorophylls and carotenoids of marine phytoplankton , 1997 .

[107]  C. Tomas,et al.  Identifying marine phytoplankton , 1997 .

[108]  M. D. Keller,et al.  A comparison of HPLC pigment signatures and electron microscopic observations for oligotrophic waters of the North Atlantic and Pacific Oceans , 1996 .

[109]  R. Barlow,et al.  Pigment signatures of the phytoplankton composition in the northeastern Atlantic during the 1990 spring bloom , 1993 .

[110]  H. Ducklow,et al.  Plankton succession and carbon cycling at 47°N 20°W during the JGOFS North Atlantic Bloom Experiment , 1993 .

[111]  John Throndsen Chapter 2 – The Planktonic Marine Flagellates , 1993 .

[112]  ScienceDirect Deep-sea research. Part A, Oceanographic research papers , 1992 .

[113]  Daniel J. Repeta,et al.  Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton , 1991 .

[114]  N. P. Fofonoff,et al.  On the calculation of the Brunt-Väisäla frequency , 1990 .

[115]  R. Pingree,et al.  Celtic and Armorican slope and shelf residual currents , 1989 .

[116]  P. Holligan,et al.  Phytoplankton distributions along the shelf break , 1986 .

[117]  H. Utermöhl Zur Vervollkommnung der quantitativen Phytoplankton-Methodik , 1958 .

[118]  Mar Ecol Prog,et al.  Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton , 2022 .