감정평가에 기반한 환경과 행동패턴 학습을 위한 궤환 모듈라 네트워크

감정은 지능을 지닌 존재의 이성판단에 영향을 준다. 그래서 주변 환경정보에 의해 평가된 기본적이고 보편적인 감정을 로봇에 가미하면 더욱 인간과 가까운 지능 로봇이 될 것이다. 그러나 인간의 감정을 학습하기 위해서는 다양한 감각정보의 학습과 패턴 분류가 선행되어야 하고 이를 위해서 적합한 네트워크 구조가 요구된다. 신경망은 시스템의 특징을 추출하는데 매우 우수한 능력을 발휘하고 있다. 그러나 일시적 혼선현상과 지역 최소치에 수렴하는 단점이 있다. 그래서 복잡한 문제를 단순한 여러 개의 부분적인 문제로 나누어 해결하는 모듈라 설계방법이 관심의 대상이 되고 있다. 본 논문에서는 수많은 감정평가와 학습 데이터 패턴들을 학습하기 위해서 재결합과 재구성에 탁월한 성능을 지닌 Jacobs와 Jordan이 제안한 모듈라 네트워크와 상황의 재 표현이 가능하고 예측값과 모델링에 적합한 특징을 지닌 궤환 신경망을 결합하였다. 구성된 구조는 기존의 모듈라 네트워크의 학습결과와 비교 검토하였다.