Mass and p-factor of the Type II Cepheid OGLE-LMC-T2CEP-098 in a Binary System

We present the results of a study of the type II Cepheid ($P_{puls} = 4.974 d$) in the eclipsing binary system OGLE-LMC-T2CEP-098 ($P_{orb} = 397.2 d$). The Cepheid belongs to the peculiar W Vir group, for which the evolutionary status is virtually unknown. It is the first single-lined system with a pulsating component analyzed using the method developed by Pilecki et al. (2013). We show that the presence of a pulsator makes it possible to derive accurate physical parameters of the stars even if radial velocities can be measured for only one of the components. We have used four different methods to limit and estimate the physical parameters, eventually obtaining precise results by combining pulsation theory with the spectroscopic and photometric solutions. The Cepheid radius, mass and temperature are $25.3 \pm 0.2 R_\odot$, $1.51 \pm 0.09 M_\odot$ and $5300 \pm 100 K$, respectively, while its companion has similar size ($26.3 R_\odot$), but is more massive ($6.8 M_\odot$) and hotter ($9500 K$). Our best estimate for the p-factor of the Cepheid is $1.30 \pm 0.03$. The mass, position on the period-luminosity diagram, and pulsation amplitude indicate that the pulsating component is very similar to the Anomalous Cepheids, although it has a much longer period and is redder in color. The very unusual combination of the components suggest that the system has passed through a mass transfer phase in its evolution. More complicated internal structure would then explain its peculiarity.

[1]  Pierre Kervella,et al.  Observational calibration of the projection factor of Cepheids - I. The type II Cepheid κ Pavonis , 2015, 1503.05176.

[2]  B. Madore,et al.  Physical parameters and the projection factor of the classical Cepheid in the binary system OGLE-LMC-CEP-0227 , 2013, 1308.5023.

[3]  R. I. Anderson,et al.  HARPS-N high spectral resolution observations of Cepheids I. The Baade-Wesselink projection factor of δ Cep revisited , 2017, 1701.01589.

[4]  M. Catelán,et al.  THE ARAUCARIA PROJECT: THE FIRST-OVERTONE CLASSICAL CEPHEID IN THE ECLIPSING SYSTEM OGLE-LMC-CEP-2532 , 2015, 1504.04611.

[5]  G. Fiorentino,et al.  THE PANCHROMATIC VIEW OF THE MAGELLANIC CLOUDS FROM CLASSICAL CEPHEIDS. I. DISTANCE, REDDENING, AND GEOMETRY OF THE LARGE MAGELLANIC CLOUD DISK , 2016, 1609.03554.

[6]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[7]  George Wallerstein,et al.  The Cepheids of Population II and Related Stars , 2002 .

[8]  Pierre Kervella,et al.  Observational calibration of the projection factor of Cepheids - III. The long-period Galactic Cepheid RS Puppis , 2017, 1701.05192.

[9]  P. Bonifacio,et al.  A new implementation of the infrared flux method using the 2MASS catalogue , 2009, 0901.3034.

[10]  M. Feast,et al.  Period-luminosity relations of type II Cepheids in the Magellanic Clouds , 2010, 1012.0098.

[11]  To Appear in ApJ Preprint typeset using L ATEX style emulateapj v. 6/22/04 THE EFFECTIVE TEMPERATURE SCALE OF FGK STARS. II. Teff: COLOR: [Fe/H] CALIBRATIONS , 2008 .

[12]  RR-Lyrae-type pulsations from a 0.26-solar-mass star in a binary system , 2012, Nature.

[13]  A. Udalski The Optical Gravitational Lensing Experiment . Real Time Data Analysis Systems in the OGLE-III Survey , 2004 .

[14]  L. Blitz,et al.  Extinction in the Large Magellanic Cloud , 2007, astro-ph/0703421.

[15]  Santiago Arribas,et al.  The effective temperature scale of giant stars (F0–K5) - II. Empirical calibration of versus colours and [Fe/H] , 1999 .

[16]  N. Simon,et al.  The Structural Properties Of Cepheid Light Curves , 1981 .

[17]  M. Ireland,et al.  LIGHT CURVES AND PERIOD CHANGES OF TYPE II CEPHEIDS IN THE GLOBULAR CLUSTERS M3 AND M5 , 2010, 1003.5924.

[18]  Nicholas B. Suntzeff,et al.  New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics , 2002 .

[19]  W. Gieren,et al.  High-resolution spectroscopy for Cepheids distance determination V. Impact of the cross-correlation method on the p-factor and the γ-velocities , 2009, 0905.4540.

[20]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[21]  P. Maxted,et al.  Eclipsing binaries in open clusters. II. V453 Cyg in NGC 6871 , 2004, astro-ph/0403572.

[22]  H. Neilson,et al.  Period Changes and Evolution in Pulsating Variable Stars , 2016, 1611.03030.

[23]  L. Szabados,et al.  First observations of W Virginis stars with K2: detection of period doubling , 2016, 1610.05488.

[24]  G. Benedetto,et al.  Predicting accurate stellar angular diameters by the near-infrared surface brightness technique , 2005 .

[25]  R. de Grijs,et al.  The VMC Survey - XIII : Type II Cepheids in the Large Magellanic Cloud , 2014, 1410.7817.

[26]  Harinder P. Singh,et al.  Large Magellanic Cloud Near-infrared Synoptic Survey. IV. Leavitt Laws for Type II Cepheid Variables , 2017, 1702.00967.

[27]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[28]  David R. Alexander,et al.  Low-Temperature Opacities , 2005, astro-ph/0502045.

[29]  P. Kervella,et al.  Thermal infrared properties of classical and type II Cepheids - Diffraction limited 10 μm imaging with VLT/VISIR , 2011, 1111.7215.

[30]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[31]  A. J. Drake,et al.  The MACHO Project Large Magellanic Cloud Variable Star Inventory. XII. Three Cepheid Variables in Eclipsing Binaries , 2002, astro-ph/0201481.

[32]  Michael W. Feast,et al.  The Luminosities and Distance Scales of Type II Cepheid and RR Lyrae variables , 2008, 0803.0466.

[33]  G. Bono,et al.  Evolutionary Scenario for Metal-Poor Pulsating Stars.II.Anomalous Cepheids , 1997 .

[34]  P. Etzel,et al.  Photometric orbits of seven detached eclipsing binaries , 1981 .

[35]  Pavlos Protopapas,et al.  Eclipsing Binary Stars in the Large and Small Magellanic Clouds from the MACHO Project: The Sample , 2007, 0711.1617.

[36]  Seismology of triple-mode classical Cepheids of the Large Magellanic Cloud , 2005, astro-ph/0501417.

[37]  D. Graczyk,et al.  Improving the surface brightness-color relation for early-type stars using optical interferometry , 2014, 1409.1351.

[38]  R. Poleski,et al.  Discovery of period doubling in BL Herculis stars of the OGLE survey. Observations and theoretical models , 2011, 1109.5699.

[39]  R. Schiavon,et al.  A library of high resolution synthetic stellar spectra from 300 nm to 1.8 μm with solar and α-enhanced composition , 2005, astro-ph/0505511.

[40]  M. Catelán,et al.  THE ARAUCARIA PROJECT: A STUDY OF THE CLASSICAL CEPHEID IN THE ECLIPSING BINARY SYSTEM OGLE LMC562.05.9009 IN THE LARGE MAGELLANIC CLOUD , 2015, 1511.02826.

[41]  Pierre Kervella,et al.  Observational calibration of the projection factor of Cepheids - II. Application to nine Cepheids with HST/FGS parallax measurements , 2016, 1601.04727.

[42]  R. Smolec,et al.  Survey of non-linear hydrodynamic models of type-II Cepheids , 2015, 1512.01550.

[43]  John R. Percy,et al.  Period Changes, Evolution, and Multiperiodicity in the Peculiar Population II Cepheid RU Camelopardalis , 1998 .

[44]  R. A. Gingold The evolutionary status of population II cepheids. , 1976 .

[45]  M. Templeton,et al.  Multicolor Photometry of the Type II Cepheid Prototype W Virginis , 2007, 0709.0401.

[46]  P. Wood,et al.  Theoretical models of Cepheid variables and their BVI(c) colors and magnitudes , 1993 .