Efficient Reciprocal Collision Avoidance between Heterogeneous Agents Using CTMAT

We present a novel algorithm for reciprocal collision avoidance between heterogeneous agents of different shapes and sizes. We present a novel CTMAT representation based on medial axis transform to compute a tight fitting bounding shape for each agent. Each CTMAT is represented using tuples, which are composed of circular arcs and line segments. Based on the reciprocal velocity obstacle formulation, we reduce the problem to solving a low-dimensional linear programming between each pair of tuples belonging to adjacent agents. We precompute the Minkowski Sums of tuples to accelerate the runtime performance. Finally, we provide an efficient method to update the orientation of each agent in a local manner. We have implemented the algorithm and highlight its performance on benchmarks corresponding to road traffic scenarios and different vehicles. The overall runtime performance is comparable to prior multi-agent collision avoidance algorithms that use circular or elliptical agents. Our approach is less conservative and results in fewer false collisions.

[1]  Julius Ziegler,et al.  Making Bertha Drive—An Autonomous Journey on a Historic Route , 2014, IEEE Intelligent Transportation Systems Magazine.

[2]  Weiwen Deng,et al.  Trajectory planning for vehicle autonomous driving with uncertainties , 2014, Proceedings 2014 International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS).

[3]  P. Molnár Social Force Model for Pedestrian Dynamics Typeset Using Revt E X 1 , 1995 .

[4]  Zuduo Zheng,et al.  Incorporating human-factors in car-following models : a review of recent developments and research needs , 2014 .

[5]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[6]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Lakshman Prasad,et al.  Morphological Analysis of Shapes , 1997 .

[8]  Jacques-Olivier Lachaud,et al.  Delaunay conforming iso-surface, skeleton extraction and noise removal , 2001, Comput. Geom..

[9]  Eiichi Yoshida,et al.  A Local Collision Avoidance Method for Non-strictly Convex Polyhedra , 2008, Robotics: Science and Systems.

[10]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[11]  Thierry Fraichard,et al.  Safe motion planning in dynamic environments , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Dinesh Manocha,et al.  Reciprocal n-Body Collision Avoidance , 2011, ISRR.

[14]  Dinesh Manocha,et al.  AutonoVi: Autonomous vehicle planning with dynamic maneuvers and traffic constraints , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[15]  Jean-Claude Latombe,et al.  Using a PRM planner to compare centralized and decoupled planning for multi-robot systems , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[16]  Daniel Thalmann,et al.  Torso Crowds , 2017, IEEE Transactions on Visualization and Computer Graphics.

[17]  Marcelo H. Ang,et al.  Perception, Planning, Control, and Coordination for Autonomous Vehicles , 2017 .

[18]  Dinesh Manocha,et al.  Interactive simulation of local interactions in dense crowds using elliptical agents , 2017 .

[19]  Christos Katrakazas,et al.  Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions , 2015 .

[20]  Norman I. Badler,et al.  Controlling individual agents in high-density crowd simulation , 2007, SCA '07.

[21]  Dinesh Manocha,et al.  Exact computation of the medial axis of a polyhedron , 2004, Comput. Aided Geom. Des..

[22]  Hajime Asama,et al.  Inevitable collision states — a step towards safer robots? , 2004, Adv. Robotics.

[23]  Maria L. Gini,et al.  Implicit Coordination in Crowded Multi-Agent Navigation , 2016, AAAI.

[24]  Dinesh Manocha,et al.  AutoRVO: Local Navigation with Dynamic Constraints in Dense Heterogeneous Traffic , 2018, ArXiv.

[25]  Reid G. Simmons,et al.  The curvature-velocity method for local obstacle avoidance , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[26]  L. Paul Chew,et al.  Constrained Delaunay triangulations , 1987, SCG '87.

[27]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[28]  Dinesh Manocha,et al.  PedVR: simulating gaze-based interactions between a real user and virtual crowds , 2016, VRST.

[29]  Rahul Narain,et al.  Implicit crowds , 2017, ACM Trans. Graph..

[30]  Jean-Claude Latombe,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002, Int. J. Robotics Res..

[31]  Julien Pettré,et al.  Going Through, Going Around: A Study on Individual Avoidance of Groups , 2015, IEEE Transactions on Visualization and Computer Graphics.

[32]  V. Ralph Algazi,et al.  Continuous skeleton computation by Voronoi diagram , 1991, CVGIP Image Underst..

[33]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[35]  William Whittaker,et al.  Autonomous Driving in Traffic: Boss and the Urban Challenge , 2009, AI Mag..

[36]  David Hsu,et al.  Randomized Kinodynamic Motion Planning with Moving Obstacles Randomized Kinodynamic Motion Planning with Moving Obstacles , 2002 .

[37]  Kristi A. Morgansen,et al.  Distributed reactive collision avoidance , 2012, Autonomous Robots.

[38]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[39]  Caiming Zhang,et al.  Q-MAT , 2015, ACM Trans. Graph..

[40]  Jur P. van den Berg,et al.  Reciprocal collision avoidance for robots with linear dynamics using LQR-Obstacles , 2013, 2013 IEEE International Conference on Robotics and Automation.

[41]  Dinesh Manocha,et al.  DenseSense: interactive crowd simulation using density-dependent filters , 2014, SCA '14.

[42]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[43]  Dinesh Manocha,et al.  SocioSense: Robot navigation amongst pedestrians with social and psychological constraints , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[44]  A. Schadschneider Cellular Automaton Approach to Pedestrian Dynamics - Theory , 2001, cond-mat/0112117.

[45]  Dinesh Manocha,et al.  Real-time reciprocal collision avoidance with elliptical agents , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[46]  Jur P. van den Berg,et al.  Generalized reciprocal collision avoidance , 2015, Int. J. Robotics Res..

[47]  Paul A. Beardsley,et al.  Reciprocal collision avoidance for multiple car-like robots , 2012, 2012 IEEE International Conference on Robotics and Automation.

[48]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[49]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[50]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[51]  Dinesh Manocha,et al.  Dynamic group behaviors for interactive crowd simulation , 2016, Symposium on Computer Animation.

[52]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[53]  Mark H. Overmars,et al.  A Predictive Collision Avoidance Model for Pedestrian Simulation , 2009, MIG.

[54]  Dominique Attali,et al.  Computing and Simplifying 2D and 3D Continuous Skeletons , 1997, Comput. Vis. Image Underst..