Host size effect in the complexation of two bis(m-phenylene)-32-crown-10-based cryptands with a diazapyrenium salt

[1]  H. Gibson,et al.  Isomeric 2,6-pyridino-cryptands based on dibenzo-24-crown-8. , 2007, The Journal of organic chemistry.

[2]  Feihe Huang,et al.  Inclusion [2]complexes based on the cryptand/diquat recognition motif , 2007 .

[3]  Q. Zong,et al.  Complexation of triptycene-based cylindrical macrotricyclic polyether toward diquaternary salts: ion-controlled binding and release of the guests. , 2007, The Journal of organic chemistry.

[4]  Yi‐Hung Liu,et al.  Highly selective Na(+)-templated formation of [2]pseudorotaxanes exhibiting significant optical outputs. , 2007, Angewandte Chemie.

[5]  Yu Liu,et al.  Cyclodextrin-driven movement of cucurbit[7]uril. , 2007, The Journal of organic chemistry.

[6]  Euan R. Kay,et al.  A molecular information ratchet , 2007, Nature.

[7]  G. Ercolani,et al.  Template effects in the formation of [2]pseudo-rotaxanes containing diazapyrenium units. , 2007, The Journal of organic chemistry.

[8]  D. Rudkevich,et al.  Separations using carbon dioxide. , 2007, Journal of the American Chemical Society.

[9]  R. Nolte,et al.  Processive enzyme mimic: Kinetics and thermodynamics of the threading and sliding process , 2006, Proceedings of the National Academy of Sciences.

[10]  S. Otto,et al.  Noncovalent interactions within a synthetic receptor can reinforce guest binding. , 2006, Journal of the American Chemical Society.

[11]  Yi‐Hung Liu,et al.  An extremely stable host-guest complex that functions as a fluorescence probe for calcium ions. , 2006, Chemistry.

[12]  Feihe Huang,et al.  Bis(meta-phenylene)-32-crown-10-based cryptand/diquat inclusion [2]complexes. , 2006, Chemical communications.

[13]  Sarah J. Vella,et al.  A mechanical "flip-switch". Interconversion between co-conformations of a [2]rotaxane with a single recognition site. , 2006, Chemical communications.

[14]  F. Raymo,et al.  Supramolecular assembly of 2,7-dimethyldiazapyrenium and cucurbit[8]uril: a new fluorescent host for detection of catechol and dopamine. , 2005, Chemistry.

[15]  Feihe Huang,et al.  Polypseudorotaxanes and polyrotaxanes , 2005 .

[16]  Feihe Huang,et al.  Slow-exchange C3-symmetric cryptand/trispyridinium inclusion complexes containing non-linear guests: a new type of threaded structure , 2005 .

[17]  E. W. Meijer,et al.  Dendrimer-based transient supramolecular networks. , 2005, Journal of the American Chemical Society.

[18]  D. Powell,et al.  Anion binding motifs: topicity and charge in amidocryptands. , 2005, Journal of the American Chemical Society.

[19]  Feihe Huang,et al.  Bis(m-phenylene)-32-crown-10/monopyridinium [2]pseudorotaxanes , 2005 .

[20]  Feihe Huang,et al.  Remarkably improved complexation of a bisparaquat by formation of a pseudocryptand-based [3]pseudorotaxane. , 2005, Chemical communications.

[21]  Feihe Huang,et al.  A supramolecular poly[3]pseudorotaxane by self-assembly of a homoditopic cylindrical bis(crown ether) host and a bisparaquat derivative. , 2005, Chemical communications.

[22]  Feihe Huang,et al.  Bis(m-phenylene)-32-crown-10-based cryptands, powerful hosts for paraquat derivatives. , 2005, The Journal of organic chemistry.

[23]  F. Raymo,et al.  Tight inclusion complexation of 2,7-dimethyldiazapyrenium in cucurbit[7]uril , 2005 .

[24]  Feihe Huang,et al.  A supramolecular triarm star polymer from a homotritopic tris(crown ether) host and a complementary monotopic paraquat-terminated polystyrene guest by a supramolecular coupling method. , 2005, Journal of the American Chemical Society.

[25]  Feihe Huang,et al.  Synthesis of a symmetric cylindrical bis(crown ether) host and its complexation with paraquat. , 2005, The Journal of organic chemistry.

[26]  Hsian-Rong Tseng,et al.  Molecular-mechanical switch-based solid-state electrochromic devices. , 2004, Angewandte Chemie.

[27]  Feihe Huang,et al.  Formation of dimers of inclusion cryptand/paraquat complexes driven by dipole-dipole and face-to-face pi-stacking interactions. , 2004, Chemical communications.

[28]  Leyong Wang,et al.  Multiple Catenanes Derived from Calix[4]arenes , 2004, Science.

[29]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[30]  H. Kwong,et al.  A novel chiral terpyridine macrocycle as a fluorescent sensor for enantioselective recognition of amino acid derivatives. , 2004, Chemical communications.

[31]  Feihe Huang,et al.  A cryptand/bisparaquat [3]pseudorotaxane by cooperative complexation. , 2003, Journal of the American Chemical Society.

[32]  Feihe Huang,et al.  First pseudorotaxane-like [3]complexes based on cryptands and paraquat: self-assembly and crystal structures. , 2003, Journal of the American Chemical Society.

[33]  J F Stoddart,et al.  Artificial molecular-level machines. Dethreading-rethreading of a pseudorotaxane powered exclusively by light energy. , 2001, Chemical communications.

[34]  Mao,et al.  A convenient synthesis and spectroscopic characterization of N, N'-Bis(2-propenyl)-2,7-diazapyrenium quaternary salts , 2000, The Journal of organic chemistry.

[35]  J. Fraser Stoddart,et al.  Constructing molecular machinery: A chemically-switchable [2]catenane [11] , 2000 .

[36]  Andrew J. P. White,et al.  Diazapyrenium-containing catenanes and rotaxanes , 1999 .

[37]  Chuan-feng Chen,et al.  Synthesis of new chromogenic calix[4]crowns and molecular recognition of alkylamines , 1997 .

[38]  K. A. Connors,et al.  Binding Constants: The Measurement of Molecular Complex Stability , 1987 .

[39]  Joel H. Hildebrand,et al.  A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons , 1949 .