Fishing for Pleiotropic QTLs in a Polygenic Sea

The application of factor analysis to human genetics has the potential to discover the coordinated control of multiple traits by common environment, common polygenes, or a single major gene. Classical factor analysis explains the covariation among the components of a random vector by approximating the vector by a linear transformation of a small number of uncorrelated factors. In the current paper we show how factor analysis dovetails with the classical variance decompositions of biometrical genetics. To explore the relationships between related quantitative variables, and avoid complicated positive definiteness constraints, we employ Cholesky and factor analytic decompositions. We derive an ECM algorithm and a competing quasi‐Newton algorithm for estimating parameters by maximum likelihood and propose tactics for selecting initial parameter values. We also show how parameter asymptotic standard errors under these parameterizations propagate to asymptotic standard errors of the underlying variance components. Our genetic analysis program Mendel, which now incorporates the program Fisher, has performed well on a variety of data sets. We illustrate our methods, algorithms, and models on two data sets: a bivariate quantitative genetic example using total finger ridge count data and a multivariate linkage example using insulin resistance data.

[1]  A. Newell,et al.  A model for fingerprint formation , 2004 .

[2]  S. Horvath,et al.  Multivariate variance-components analysis of longitudinal blood pressure measurements from the Framingham Heart Study , 2003, BMC Genetics.

[3]  Simon E Fisher,et al.  Use of multivariate linkage analysis for dissection of a complex cognitive trait. , 2003, American journal of human genetics.

[4]  M A Province,et al.  Multivariate and multilocus variance components method, based on structural relationships to assess quantitative trait linkage via SEGPATH , 2003, Genetic epidemiology.

[5]  Kenneth Lange,et al.  Codon and rate variation models in molecular phylogeny. , 2002, Molecular biology and evolution.

[6]  David M. Evans,et al.  The power of multivariate quantitative-trait loci linkage analysis is influenced by the correlation between variables. , 2002, American journal of human genetics.

[7]  P. O'Connell,et al.  Factors of insulin resistance syndrome--related phenotypes are linked to genetic locations on chromosomes 6 and 7 in nondiabetic mexican-americans. , 2002, Diabetes.

[8]  Jeanette C Papp,et al.  Detection and integration of genotyping errors in statistical genetics. , 2002, American journal of human genetics.

[9]  L. Peltonen,et al.  Quantitative-trait-locus analysis of body-mass index and of stature, by combined analysis of genome scans of five Finnish study groups. , 2001, American journal of human genetics.

[10]  Mariza de Andrade,et al.  Comparison of Multivariate Tests for Genetic Linkage , 2001, Human Heredity.

[11]  S. Iturria,et al.  An EM algorithm for obtaining maximum likelihood estimates in the multi-phenotype variance components linkage model. , 2000, Annals of human genetics.

[12]  L Kruglyak,et al.  Exact multipoint quantitative-trait linkage analysis in pedigrees by variance components. , 2000, American journal of human genetics.

[13]  N. Schork,et al.  Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure. , 1999, American journal of human genetics.

[14]  D. Schaid Mathematical and Statistical Methods for Genetic Analysis , 1999 .

[15]  D. Boomsma,et al.  A Comparison of Power to Detect a QTL in Sib-Pair Data Using Multivariate Phenotypes, Mean Phenotypes, and Factor Scores , 1998, Behavior genetics.

[16]  N. Martin,et al.  A twin-pronged attack on complex traits , 1997, Nature Genetics.

[17]  M C Neale,et al.  Multivariate multipoint linkage analysis of quantitative trait loci , 1996, Behavior genetics.

[18]  K Lange,et al.  Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. , 1996, American journal of human genetics.

[19]  M. Elzo Unconstrained procedures for the estimation of positive definite covariance matrices using restricted maximum likelihood in multibreed populations. , 1996, Journal of animal science.

[20]  C. Amos Robust variance-components approach for assessing genetic linkage in pedigrees. , 1994, American journal of human genetics.

[21]  N. Schork,et al.  Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power, and modeling considerations. , 1993, American journal of human genetics.

[22]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .

[23]  Richard H. Byrd,et al.  A Theoretical and Experimental Study of the Symmetric Rank-One Update , 1993, SIAM J. Optim..

[24]  Nicholas I. M. Gould,et al.  Convergence of quasi-Newton matrices generated by the symmetric rank one update , 1991, Math. Program..

[25]  D. Goldgar Multipoint analysis of human quantitative genetic variation. , 1990, American journal of human genetics.

[26]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[27]  J Siemiatycki,et al.  The problem of multiple inference in studies designed to generate hypotheses. , 1985, American journal of epidemiology.

[28]  T. Beaty,et al.  Use of robust variance components models to analyse triglyceride data in families , 1985, Annals of human genetics.

[29]  R. Elston,et al.  A bivariate problem in human genetics: ascertainment of families through a correlated trait. , 1984, American journal of medical genetics.

[30]  K. Lange,et al.  Extensions to pedigree analysis. IV. Covariance components models for multivariate traits. , 1983, American journal of medical genetics.

[31]  J. Mathews,et al.  Extensions to multivariate normal models for pedigree analysis , 1982, Annals of human genetics.

[32]  Jantz Rl,et al.  Finger ridge-counts and handedness. , 1979 .

[33]  K. Lange Central limit theorems of pedigrees , 1978 .

[34]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[35]  L J Eaves,et al.  The genetical analysis of covariance structure , 1977, Heredity.

[36]  K. Lange,et al.  Extensions to pedigree analysis III. Variance components by the scoring method , 1976, Annals of human genetics.

[37]  M. Kupperman Linear Statistical Inference and Its Applications 2nd Edition (C. Radhakrishna Rao) , 1975 .

[38]  H. Akaike A new look at the statistical model identification , 1974 .

[39]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[40]  J. D. Pearson ON VARIABLE METRIC METHODS OF MINIMIZATION , 1968 .

[41]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[42]  朝倉 利光 R. B. Blackman and J. W. Tukey: The Measurement of Power Spectra, Dover Publications, Inc., New York, 1958, 208頁, 13.5×16cm, $1.85 , 1964 .

[43]  David M. Evans,et al.  Multivariate QTL linkage analysis suggests a QTL for platelet count on chromosome 19q , 2004, European Journal of Human Genetics.

[44]  P. Sham,et al.  Variance‐components QTL linkage analysis of selected and non‐normal samples: Conditioning on trait values , 2000, Genetic epidemiology.

[45]  L. Almasy,et al.  Robust LOD scores for variance component‐based linkage analysis , 2000, Genetic epidemiology.

[46]  C. Amos,et al.  Ascertainment issues in variance components models. , 2000, Genetic epidemiology.

[47]  Kenneth Lange,et al.  Numerical analysis for statisticians , 1999 .

[48]  C. Amos,et al.  Methods to estimate genetic components of variance for quantitative traits in family studies , 1999, Genetic epidemiology.

[49]  J. Blangero,et al.  GAW10: Simulated family data for a common oligogenic disease with quantitative risk factors , 1997, Genetic epidemiology.

[50]  L. Almasy,et al.  Exploiting pleiotropy to map genes for oligogenic phenotypes using extended pedigree data , 1997, Genetic epidemiology.

[51]  L. Almasy,et al.  Multipoint oligogenic linkage analysis of quantitative traits , 1997, Genetic epidemiology.

[52]  R. Jennrich,et al.  Acceleration of the EM Algorithm by using Quasi‐Newton Methods , 1997 .

[53]  T. Ferguson A Course in Large Sample Theory , 1996 .

[54]  Jan de Leeuw,et al.  Block-relaxation Algorithms in Statistics , 1994 .

[55]  K. Lange,et al.  Programs for pedigree analysis: Mendel, Fisher, and dGene , 1988, Genetic epidemiology.

[56]  D. Kendall Applied Probability , 1958, Nature.

[57]  S. B. Holt,et al.  Genetics of dermal ridges; bilateral asymmetry in finger ridge-counts. , 1954, Annals of eugenics.

[58]  N. A. Barnicot Red hair in African Negroes; a preliminary study. , 1953, Annals of eugenics.

[59]  G. Dahlberg,et al.  Genetics of human populations. , 1948, Advances in genetics.