Layer Stripping for a Transversely Isotropic Elastic Medium

In this paper we develop a layer stripping algorithm for transversely isotropic elastic materials in three-dimensional space. We first prove that by making displacement and traction measurements at the boundary of these elastic materials one can determine the elastic tensor and all its derivatives at the boundary. The elastic measurements made at the boundary are encoded in the Dirichlet to Neumann (DN) map. Then we use the Riccati equation developed in [G. Nakamura and G. Uhlmann, A layer stripping algorithm in elastic impedance tomography, in Inverse Problems in Wave Propagation, IMA Vol. Math. Appl. 90, Springer-Verlag, New York, 1997, pp. 375-384] for the DN map in any anisotropic elastic medium to approximate the elastic tensor in the interior.

[1]  Masaru Ikehata,et al.  RECONSTRUCTION OF THE SHAPE OF THE INCLUSION BY BOUNDARY MEASUREMENTS , 1998 .

[2]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[3]  G. Uhlmann,et al.  Global uniqueness for an inverse boundary value problem arising in elasticity , 1994 .

[4]  J. Lothe,et al.  Free surface (Rayleigh) waves in anisotropic elastic half-spaces: the surface impedance method , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[6]  Gen Nakamura,et al.  A Layer Stripping Algorithm in Elastic Impedance Tomography , 1997 .

[7]  J. Lothe,et al.  On the existence of surface‐wave solutions for anisotropic elastic half‐spaces with free surface , 1976 .

[8]  John M. Lee,et al.  Determining anisotropic real-analytic conductivities by boundary measurements , 1989 .

[9]  David Isaacson,et al.  Layer stripping: a direct numerical method for impedance imaging , 1991 .

[10]  Gen Nakamura,et al.  A FORMULA FOR THE FUNDAMENTAL SOLUTION OF ANISOTROPIC ELASTICITY , 1997 .

[11]  T. C. T. Ting,et al.  Anisotropic Elasticity: Theory and Applications , 1996 .

[12]  Sigeru Mizohata The Theory of Partial Differential Equations , 1973 .

[13]  T. C. T. Ting,et al.  THE THREE-DIMENSIONAL ELASTOSTATIC GREEN'S FUNCTION FOR GENERAL ANISOTROPIC LINEAR ELASTIC SOLIDS , 1997 .

[14]  G. Uhlmann,et al.  Inverse problems at the boundary for an elastic medium , 1995 .

[15]  G. Uhlmann,et al.  IDENTIFICATION OF LAME PARAMETERS BY BOUNDARY MEASUREMENTS , 1993 .

[16]  Gen Nakamura,et al.  A Nonuniqueness Theorem for an Inverse Boundary Value Problem in Elasticity , 1996, SIAM J. Appl. Math..

[17]  Kazumi Tanuma,et al.  Surface-impedance tensors of transversely isotropic elastic materials , 1996 .

[18]  P. Chadwick,et al.  Foundations of the Theory of Surface Waves in Anisotropic Elastic Materials , 1977 .

[19]  G. Nakamura,et al.  Identification of Lame coefficients from boundary observations , 1991 .