Thermal atomic layer etching of VO2 using sequential BCl3 and SF4 exposures: Observation of conversion, ligand-exchange, and oxidation state changes

The thermal atomic layer etching (ALE) of VO2 was demonstrated using sequential exposures of BCl3 and SF4. The VO2 etch rate measured by quartz crystal microbalance investigations at 250 °C was 2.3 Å/cycle. The mass losses during individual BCl3 and SF4 reactions were nearly self-limiting versus BCl3 and SF4 exposures. The VO2 etch rates were also dependent on temperature and varied from 0.05 Å/cycle at 150 °C to 2.3 Å/cycle at 250 °C. Fourier transform infrared (FTIR) spectroscopy studies observed VO2 etching by monitoring the decrease in absorbance from V—O stretching vibrations in the VO2 film. The FTIR spectra during the initial BCl3 exposures on the VO2 film observed the growth of absorbance from B—O stretching vibrations from B2O3 and the concurrent loss of V=O vibrational features. These changes were consistent with BCl3 converting VO2 to B2O3. The FTIR difference spectra during subsequent SF4 and BCl3 reactions also observed the growth and loss of absorbance features that were attributed to F3V=O and V—F stretching vibrations, respectively. These changes indicate that SF4 fluorinates VO2 to form a VOF3 surface layer and then BCl3 undergoes ligand-exchange with VOF3 to volatilize the VOF3 surface layer as VOCl3. There was also evidence for conversion of VO2 to B2O3 during BCl3 exposures and then removal of B2O3 by SF4 exposures. In addition, quadrupole mass spectrometry (QMS) measurements observed that the SF4 exposures produced ion intensities for SOxFyClz products in oxidation states greater than 4+. These SOxFyClz products indicate that SF4 is being oxidized and acting as a deoxyfluorination reactant. Concurrently, the QMS analysis also monitored ion intensity for S8+, S7+, S6+, S5+, and S4+. These S8 electron impact ionization products argue that SF4 oxidation occurs concurrently with SF4 reduction. The QMS also observed ion intensities corresponding to VCl4+ and VOCl3+. The presence of VOCl3+ indicates that the oxidation state of vanadium has increased to 5+ in some of the volatile etch products. The QMS also detected trichloroboroxin (B3O3Cl3) during BCl3 exposures. B3O3Cl3 is a known etch product of B2O3 during BCl3 exposures. BCl3 can convert VO2 to B2O3 and then proceed to etch the converted B2O3. Thermal VO2 ALE using BCl3 and SF4 reveals the rich complexity of surface etching reactions that can proceed by multiple pathways including conversion, ligand-exchange, and oxidation state changes.

[1]  S. George,et al.  Thermal Atomic Layer Etching of Al2O3 Using Sequential HF and BCl3 Exposures: Evidence for Combined Ligand-Exchange and Conversion Mechanisms , 2022, Chemistry of Materials.

[2]  S. George,et al.  Volatile Products from Ligand Addition of P(CH3)3 to NiCl2, PdCl2, and PtCl2: Pathway for Metal Thermal Atomic Layer Etching , 2022, The Journal of Physical Chemistry C.

[3]  S. George,et al.  Thermal Atomic Layer Etching of Aluminum Nitride Using HF or XeF2 for Fluorination and BCl3 for Ligand Exchange , 2022, The Journal of Physical Chemistry C.

[4]  S. George,et al.  Spontaneous etching of B2O3 by HF gas studied using infrared spectroscopy, mass spectrometry, and density functional theory , 2022, Journal of Vacuum Science & Technology A.

[5]  S. George,et al.  Thermal Atomic Layer Etching of Nickel Using Sequential Chlorination and Ligand-Addition Reactions , 2021, Chemistry of Materials.

[6]  V. Bright,et al.  Deposit and etchback approach for ultrathin Al2O3 films with low pinhole density using atomic layer deposition and atomic layer etching , 2021, Journal of Vacuum Science & Technology A.

[7]  S. George,et al.  Thermal atomic layer etching: A review , 2021 .

[8]  S. George,et al.  Thermal Atomic Layer Etching of Gallium Oxide Using Sequential Exposures of HF and Various Metal Precursors , 2020, Chemistry of Materials.

[9]  S. George Mechanisms of Thermal Atomic Layer Etching. , 2020, Accounts of chemical research.

[10]  S. George,et al.  Effect of crystallinity on thermal atomic layer etching of hafnium oxide, zirconium oxide, and hafnium zirconium oxide , 2020, Journal of Vacuum Science & Technology A.

[11]  Joel W. Clancey,et al.  Volatile Etch Species Produced during Thermal Al2O3 Atomic Layer Etching , 2020 .

[12]  G. Yeom,et al.  Anisotropic atomic layer etching of W using fluorine radicals/oxygen ion beam , 2019, Plasma Processes and Polymers.

[13]  S. George,et al.  Thermal atomic layer etching of crystalline GaN using sequential exposures of XeF2 and BCl3 , 2019, Applied Physics Letters.

[14]  V. Bright,et al.  SF4 as the Fluorination Reactant for Al2O3 and VO2 Thermal Atomic Layer Etching , 2019, Chemistry of Materials.

[15]  R. Opila,et al.  Molecular mechanisms of atomic layer etching of cobalt with sequential exposure to molecular chlorine and diketones. , 2019, Journal of vacuum science & technology. A, Vacuum, surfaces, and films : an official journal of the American Vacuum Society.

[16]  S. George,et al.  Thermal Atomic Layer Etching of Silicon Using O2, HF, and Al(CH3)3 as the Reactants , 2018, Chemistry of Materials.

[17]  S. George,et al.  Rapid atomic layer etching of Al2O3 using sequential exposures of hydrogen fluoride and trimethylaluminum with no purging , 2018, Journal of Vacuum Science & Technology A.

[18]  S. George,et al.  Thermal atomic layer etching of HfO2 using HF for fluorination and TiCl4 for ligand-exchange , 2018, Journal of Vacuum Science & Technology A.

[19]  S. George,et al.  Thermal Atomic Layer Etching of Titanium Nitride Using Sequential, Self-Limiting Reactions: Oxidation to TiO2 and Fluorination to Volatile TiF4 , 2017 .

[20]  S. George,et al.  WO3 and W Thermal Atomic Layer Etching Using "Conversion-Fluorination" and "Oxidation-Conversion-Fluorination" Mechanisms. , 2017, ACS applied materials & interfaces.

[21]  G. Parsons,et al.  Thermal Selective Vapor Etching of TiO2: Chemical Vapor Etching via WF6 and Self-Limiting Atomic Layer Etching Using WF6 and BCl3 , 2017 .

[22]  Dong Woo Kim,et al.  Atomic Layer Etching Mechanism of MoS2 for Nanodevices. , 2017, ACS applied materials & interfaces.

[23]  S. George,et al.  Thermal Atomic Layer Etching of SiO2 by a "Conversion-Etch" Mechanism Using Sequential Reactions of Trimethylaluminum and Hydrogen Fluoride. , 2017, ACS applied materials & interfaces.

[24]  S. George,et al.  Thermal atomic layer etching of crystalline aluminum nitride using sequential, self-limiting hydrogen fluoride and Sn(acac)2 reactions and enhancement by H2 and Ar plasmas , 2016 .

[25]  S. George,et al.  Prospects for Thermal Atomic Layer Etching Using Sequential, Self-Limiting Fluorination and Ligand-Exchange Reactions. , 2016, ACS nano.

[26]  S. George,et al.  Trimethylaluminum as the Metal Precursor for the Atomic Layer Etching of Al2O3 Using Sequential, Self-Limiting Thermal Reactions , 2016 .

[27]  S. George,et al.  Mechanism of Thermal Al2O3 Atomic Layer Etching Using Sequential Reactions with Sn(acac)2 and HF , 2015 .

[28]  R. Gottscho,et al.  Overview of atomic layer etching in the semiconductor industry , 2015 .

[29]  S. George,et al.  Pyrolysis of Alucone Molecular Layer Deposition Films Studied Using In Situ Transmission Fourier Transform Infrared Spectroscopy , 2015 .

[30]  S. George,et al.  Atomic layer etching of Al2O3 using sequential, self-limiting thermal reactions with Sn(acac)2 and hydrogen fluoride. , 2015, ACS nano.

[31]  Chen Li,et al.  Effect of the chamber wall on fluorocarbon-assisted atomic layer etching of SiO2 using cyclic Ar/C4F8 plasma. , 2014, Journal of vacuum science & technology. A, Vacuum, surfaces, and films : an official journal of the American Vacuum Society.

[32]  S. Banerjee,et al.  Atomic layer etching of Al2O3 using BCl3/Ar for the interface passivation layer of III-V MOS devices , 2013 .

[33]  Jong-Hyun Ahn,et al.  Atomic layer etching of graphene for full graphene device fabrication , 2012 .

[34]  G. Yeom,et al.  Precise Depth Control and Low-Damage Atomic-Layer Etching of HfO2 using BCl3 and Ar Neutral Beam , 2008 .

[35]  S. George,et al.  Analysis of Al2O3 Atomic Layer Deposition on ZrO2 Nanoparticles in a Rotary Reactor , 2007 .

[36]  Tae-Woo Kim,et al.  Atomic layer etching of InP using a low angle forward reflected Ne neutral beam , 2006 .

[37]  Emile Haddad,et al.  Thermochromic vanadium dioxide smart coatings grown on Kapton substrates by reactive pulsed laser deposition , 2006 .

[38]  D. Lee,et al.  Atomic Layer Etching of Si(100) and Si(111) Using Cl2 and Ar Neutral Beam , 2005 .

[39]  Ivan P. Parkin,et al.  Intelligent window coatings: Atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide , 2004 .

[40]  Alexis T. Bell,et al.  Vanadyl tert-Butoxy Orthosilicate, OV[OSi(OtBu)3]3: A Model for Isolated Vanadyl Sites on Silica and a Precursor to Vanadia−Silica Xerogels† , 1999 .

[41]  D. J. Economou,et al.  Realization of atomic layer etching of silicon , 1996 .

[42]  R. Behrens,et al.  An electron impact mass spectrometry investigation of VOCl3(g), VCl3(g) and their dissociative fragments , 1982 .

[43]  R. F. Holland,et al.  High resolution infrared absorption spectra of BCl3 and BCl2F dissolved in solid argon and solid krypton , 1980 .

[44]  H. Selig,et al.  Infrared Spectra of VOF3 and POF3 , 1966 .

[45]  H. C. Clark,et al.  Infrared Spectra of Vanadium Fluorides , 1964 .

[46]  Steven M. George,et al.  Atomic Layer Etching of HfO2 Using Sequential, Self-Limiting Thermal Reactions with Sn(acac)2 and HF , 2015 .

[47]  C. Detavernier,et al.  Crystallization and semiconductor-metal switching behavior of thin VO2 layers grown by atomic layer deposition , 2014 .

[48]  I. R. Beattie,et al.  Oxide phonon spectra , 1969 .