Multipartite Entanglement in Topological Quantum Phases.

We witness multipartite entanglement in the ground state of the Kitaev chain-a benchmark model of a one dimensional topological superconductor-also with variable-range pairing, using the quantum Fisher information. Phases having a finite winding number, for both short- and long-range pairing, are characterized by a power-law diverging finite-size scaling of multipartite entanglement. Moreover, the occurring quantum phase transitions are sharply marked by the divergence of the derivative of the quantum Fisher information, even in the absence of a closing energy gap.

[1]  Peter W Shor,et al.  Supercritical entanglement in local systems: Counterexample to the area law for quantum matter , 2016, Proceedings of the National Academy of Sciences.

[2]  P. Zanardi,et al.  Quantum phase transitions and quantum fidelity in free fermion graphs , 2006, quant-ph/0608059.

[3]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[4]  Marcus Cramer,et al.  Entanglement area law from specific heat capacity , 2014, 1409.5946.

[5]  M. Martin-Delgado,et al.  Topological massive Dirac edge modes and long-range superconducting Hamiltonians , 2015, 1511.05018.

[6]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[7]  Augusto Smerzi,et al.  Fisher information and entanglement of non-Gaussian spin states , 2014, Science.

[8]  L. Pezzè,et al.  Witnessing entanglement without entanglement witness operators , 2015, Proceedings of the National Academy of Sciences.

[9]  T. Roscilde,et al.  Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems , 2015, 1509.06741.

[10]  M. B. Plenio,et al.  Quantifying entanglement with scattering experiments , 2014 .

[11]  M. Lavagna Quantum Phase Transitions , 2001, cond-mat/0102119.

[12]  J. G. Esteve,et al.  Entanglement in fermionic chains with finite range coupling and broken symmetries , 2015, 1506.06665.

[13]  Shi-Jian Gu,et al.  Fidelity, dynamic structure factor, and susceptibility in critical phenomena. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Eytan Barouch,et al.  Statistical Mechanics of the X Y Model. II. Spin-Correlation Functions , 1971 .

[15]  A. Gorshkov,et al.  Kitaev chains with long-range pairing. , 2014, Physical review letters.

[16]  Paolo Zanardi,et al.  Information-theoretic differential geometry of quantum phase transitions. , 2007, Physical review letters.

[17]  L. Dell’Anna,et al.  Extended Kitaev chain with longer-range hopping and pairing , 2017, 1703.10086.

[18]  J. I. Latorre,et al.  A short review on entanglement in quantum spin systems , 2009, 0906.1499.

[19]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[20]  Otfried Guhne,et al.  Scaling of genuine multiparticle entanglement close to a quantum phase transition , 2013, 1309.2217.

[21]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[22]  J. Pachos,et al.  Topological Quantum Liquids with Long-Range Couplings. , 2016, Physical review letters.

[23]  M B Plenio,et al.  Measuring entanglement in condensed matter systems. , 2010, Physical review letters.

[24]  Wan-Fang Liu,et al.  Quantum Fisher information and spin squeezing in the ground state of the XY model , 2013 .

[25]  A. Ludwig,et al.  Classification of Topological Insulators and Superconductors , 2009, 0905.2029.

[26]  P. Recher,et al.  Unpaired Majorana fermions in quantum wires , 2001 .

[27]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[28]  L. Lepori,et al.  Long-range Ising and Kitaev models: phases, correlations and edge modes , 2015, 1508.00820.

[29]  Hans J. Briegel,et al.  Multipartite entanglement in spin chains , 2005, quant-ph/0502160.

[30]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[31]  Eytan Barouch,et al.  Statistical Mechanics of the XY Model. III , 1970 .

[32]  J I Cirac,et al.  Entanglement versus correlations in spin systems. , 2004, Physical review letters.

[33]  D A Lidar,et al.  Quantum phase transitions and bipartite entanglement. , 2004, Physical review letters.

[34]  Mauro Paternostro,et al.  Long-range multipartite entanglement close to a first-order quantum phase transition , 2014 .

[35]  Augusto Smerzi,et al.  Fisher information and multiparticle entanglement , 2010, 1006.4366.

[36]  Gilda Frantz,et al.  Fidelity , 1864, Hall's journal of health.

[37]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[38]  Jian Ma,et al.  Fisher information and spin squeezing in the Lipkin-Meshkov-Glick model , 2009, 0905.0245.

[39]  A. Trombettoni,et al.  Effective Theory and Breakdown of Conformal Symmetry in a Long-Range Quantum Chain , 2015, 1511.05544.

[40]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[41]  Measuring multipartite entanglement through dynamic susceptibilities , 2016 .

[42]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[43]  R. Horgan,et al.  Statistical Field Theory , 2014 .

[44]  D. Bruß,et al.  Multipartite entanglement detection via structure factors. , 2009, Physical review letters.

[45]  Luca Tagliacozzo,et al.  Entanglement entropy for the long-range Ising chain in a transverse field. , 2012, Physical review letters.

[46]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[47]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[48]  Paolo Zanardi,et al.  Bures metric over thermal state manifolds and quantum criticality , 2007, 0707.2772.

[49]  G. Tóth,et al.  Multipartite entanglement and high precision metrology , 2010, 1006.4368.