Mesoscale informed parameter estimation through machine learning: A case-study in fracture modeling
暂无分享,去创建一个
Gowri Srinivasan | Diane Oyen | Dave Osthus | Daniel O'Malley | Viet T. Chau | Nishant Panda | Humberto Godinez | D. Oyen | D. Osthus | H. Godinez | V. Chau | G. Srinivasan | N. Panda | D. O’Malley
[1] P. Beran,et al. Reduced-order modeling: new approaches for computational physics , 2004 .
[2] A. Munjiza. The Combined Finite-Discrete Element Method , 2004 .
[3] R. Kranz. Microcracks in rocks: a review , 1983 .
[4] Paris Perdikaris,et al. Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations , 2017, ArXiv.
[5] Karen Willcox,et al. A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..
[6] T. Anderson,et al. Fracture mechanics - Fundamentals and applications , 2017 .
[7] Andrew Gordon Wilson,et al. Deep Kernel Learning , 2015, AISTATS.
[8] Matthew O. Williams,et al. A kernel-based method for data-driven koopman spectral analysis , 2016 .
[9] Jinlong Wu,et al. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data , 2016, 1606.07987.
[10] Krishna Rajan,et al. Application-Driven Data Analysis , 2009 .
[11] Saibal Mukhopadhyay,et al. HybridNet: Integrating Model-based and Data-driven Learning to Predict Evolution of Dynamical Systems , 2018, CoRL.
[12] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[13] David Cebon,et al. Materials Selection in Mechanical Design , 1992 .
[14] Paris Perdikaris,et al. Machine learning of linear differential equations using Gaussian processes , 2017, J. Comput. Phys..
[15] Roman Rosipal,et al. Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space , 2002, J. Mach. Learn. Res..
[16] Nils Thürey,et al. Latent Space Physics: Towards Learning the Temporal Evolution of Fluid Flow , 2018, Comput. Graph. Forum.
[17] Bryan A. Moore,et al. Reduced-order modeling through machine learning and graph-theoretic approaches for brittle fracture applications , 2019, Computational Materials Science.
[18] J N Kutz,et al. Model selection for dynamical systems via sparse regression and information criteria , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[19] Steven L. Brunton,et al. Time-Delay Observables for Koopman: Theory and Applications , 2018, SIAM J. Appl. Dyn. Syst..
[20] Lance J. Nelson,et al. Compressive sensing as a paradigm for building physics models , 2013 .
[21] Surendra P. Shah,et al. Fracture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock and Other Quasi-Brittle Materials , 1995 .
[22] Jaijeet Roychowdhury,et al. Reduced-order modeling of time-varying systems , 1999 .
[23] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[24] George E. Karniadakis,et al. Hidden physics models: Machine learning of nonlinear partial differential equations , 2017, J. Comput. Phys..
[25] Nir Friedman,et al. Probabilistic Graphical Models - Principles and Techniques , 2009 .
[26] Yuzuru Tanaka,et al. Materials informatics: a journey towards material design and synthesis. , 2016, Dalton transactions.
[27] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[28] Benjamin Peherstorfer,et al. Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..
[29] Esteban Rougier,et al. Computational Mechanics of Discontinua , 2011 .
[30] Concha Bielza,et al. Machine Learning in Bioinformatics , 2008, Encyclopedia of Database Systems.
[31] A. Munjiza,et al. Large Strain Finite Element Method: A Practical Course , 2015 .
[32] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[33] S. Laubach,et al. Microfractures: A review , 2014 .