MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems.

Biological systems are continuously challenged by an environment that is variable. Yet, a key feature of developmental and physiological processes is their remarkable stability. This review considers how microRNAs contribute to gene regulatory networks that confer robustness.

[1]  G. Evan,et al.  Suppression of Myc-Induced Apoptosis in β Cells Exposes Multiple Oncogenic Properties of Myc and Triggers Carcinogenic Progression , 2002, Cell.

[2]  N. Barkai,et al.  Variability and robustness in biomolecular systems. , 2007, Molecular cell.

[3]  G. Goodall,et al.  The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1 , 2008, Nature Cell Biology.

[4]  M. F. Shannon,et al.  A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. , 2008, Cancer research.

[5]  E. Izaurralde,et al.  Getting to the Root of miRNA-Mediated Gene Silencing , 2008, Cell.

[6]  G. Daley,et al.  Selective Blockade of MicroRNA Processing by Lin28 , 2008, Science.

[7]  Lynn Doucette-Stamm,et al.  A C . elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity , 2008 .

[8]  Mihaela Zavolan,et al.  miR-375 maintains normal pancreatic α- and β-cell mass , 2009, Proceedings of the National Academy of Sciences.

[9]  A. van Oudenaarden,et al.  MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. , 2007, Molecular cell.

[10]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[11]  H. Bellen,et al.  Senseless, a Zn Finger Transcription Factor, Is Necessary and Sufficient for Sensory Organ Development in Drosophila , 2000, Cell.

[12]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[13]  O. Hobert,et al.  Architecture of a microRNA-controlled gene regulatory network that diversifies neuronal cell fates. , 2006, Cold Spring Harbor symposia on quantitative biology.

[14]  Julius Brennecke,et al.  Denoising feedback loops by thresholding--a new role for microRNAs. , 2006, Genes & development.

[15]  Claude Desplan,et al.  Stochasticity and Cell Fate , 2008, Science.

[16]  F. Slack,et al.  Small non-coding RNAs in animal development , 2008, Nature Reviews Molecular Cell Biology.

[17]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[18]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[19]  N. Baroukh,et al.  miR-375 Targets 3′-Phosphoinositide–Dependent Protein Kinase-1 and Regulates Glucose-Induced Biological Responses in Pancreatic β-Cells , 2008, Diabetes.

[20]  Justin J. Cassidy,et al.  A MicroRNA Imparts Robustness against Environmental Fluctuation during Development , 2009, Cell.

[21]  S. Cohen,et al.  microRNA functions. , 2007, Annual review of cell and developmental biology.

[22]  S. Cohen,et al.  microRNA miR-14 acts to modulate a positive autoregulatory loop controlling steroid hormone signaling in Drosophila. , 2007, Genes & development.

[23]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[24]  S. Parkhurst,et al.  Senseless acts as a binary switch during sensory organ precursor selection. , 2003, Genes & development.

[25]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[26]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[27]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[28]  Yan Li,et al.  MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. , 2006, Genes & development.

[29]  F. Lynn,et al.  Meta-regulation: microRNA regulation of glucose and lipid metabolism , 2009, Trends in Endocrinology & Metabolism.

[30]  Philippe Soriano,et al.  Ephrin signaling in vivo: Look both ways , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[31]  Piotr Mikolajczyk,et al.  A+A+C , 1964 .

[32]  C. Thummel,et al.  Molecular mechanisms of developmental timing in C. elegans and Drosophila. , 2001, Developmental cell.

[33]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[34]  Kevin Struhl,et al.  An Epigenetic Switch Involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 Links Inflammation to Cell Transformation , 2009, Cell.

[35]  A. Oudenaarden,et al.  Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences , 2008, Cell.

[36]  Sun-Mi Park,et al.  The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. , 2008, Genes & development.

[37]  G. Petsko Transformation , 2006, Genome Biology.

[38]  D. Arvanitis,et al.  Ephrin-B1 Reverse Signaling Controls a Posttranscriptional Feedback Mechanism via miR-124 , 2010, Molecular and Cellular Biology.