Sequential stopping rules for the regenerative method of simulation
暂无分享,去创建一个
[1] F. J. Anscombe,et al. Large-sample theory of sequential estimation , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] Kai Lai Chung,et al. A Course in Probability Theory , 1949 .
[3] H. Robbins,et al. ON THE ASYMPTOTIC THEORY OF FIXED-WIDTH SEQUENTIAL CONFIDENCE INTERVALS FOR THE MEAN. , 1965 .
[4] P. A. W. Lewis,et al. A Pseudo-Random Number Generator for the System/360 , 1969, IBM Syst. J..
[5] Jeffrey Buzen,et al. Analysis of system bottlenecks using a queueing network model , 1971, SIGOPS Workshop on System Performance Evaluation.
[6] Michael A. Crane,et al. Simulating Stable Stochastic Systems, I: General Multiserver Queues , 1974, JACM.
[7] Michael A. Crane,et al. Simulating Stable Stochastic Systems, II: Markov Chains , 1974, JACM.
[8] Hisashi Kobayashi,et al. Queuing Networks with Multiple Closed Chains: Theory and Computational Algorithms , 1975, IBM J. Res. Dev..
[9] Stephen S. Lavenberg,et al. Introduction to Regenerative Simulation , 1975, IBM J. Res. Dev..
[10] Michael A. Crane,et al. Simulating Stable Stochastic Systems: III. Regenerative Processes and Discrete-Event Simulations , 1975, Oper. Res..
[11] D. Iglehart. Simulating stable stochastic systems, V: Comparison of ratio estimators , 1975 .
[12] G. J. A. Stern,et al. Queueing Systems, Volume 2: Computer Applications , 1976 .