Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa

Hunna J. Watson | I. Ntalla | E. Zeggini | D. Pinto | S. Scherer | D. Rujescu | S. Cichon | I. Giegling | O. Andreassen | R. Ophoff | T. Werge | P. Sullivan | H. Hakonarson | C. Marshall | X. Estivill | N. Schork | G. Breen | A. Farmer | P. McGuffin | Yiran Guo | G. Stuber | P. Magistretti | N. Martin | P. Courtet | M. Kas | A. Palotie | S. Ripatti | A. Metspalu | T. Esko | I. Tachmazidou | K. Hatzikotoulas | G. Montgomery | K. Fischer | P. Lichtenstein | G. Escaramís | C. Dina | L. Petersen | R. Adan | R. Cone | P. Gorwood | S. Ehrlich | E. Walton | M. Maj | J. Lissowska | N. Pedersen | P. Slagboom | H. Inoko | J. Crowley | H. Gaspar | B. Herpertz-Dahlmann | J. Hauser | A. Bergen | S. Sorbi | P. Mortensen | M. Mattheisen | B. Nacmias | S. Gallinger | S. Medland | L. Karhunen | J. Kaprio | J. Kennedy | N. Ramoz | L. Duncan | J. Bryois | S. Ripke | L. Forétova | J. Hebebrand | A. Hinney | M. de Zwaan | S. Le Hellard | O. Davis | G. Dedoussis | E. Widén | L. Alfredsson | J. Grove | S. Hellard | C. Bulik | J. Szatkiewicz | L. Padyukov | L. Klareskog | M. Mattingsdal | U. Danner | J. Luykx | F. Fernández-Aranda | S. Jiménez-Murcia | U. Schmidt | C. Franklin | D. Whiteman | A. Henders | A. Scherag | S. Gordon | D. Dikeos | S. Zipfel | W. Herzog | J. Boden | L. Horwood | M. Landén | V. Janout | M. Navrátilová | L. Thornton | S. Zerwas | P. Slagboom | A. V. van Elburg | L. Huckins | Christopher Hübel | J. Pearson | J. Pantel | M. Forzan | M. Clementi | A. Forstner | M. Kennedy | J. Seitz | S. Herms | S. Guillaume | S. Crow | D. Dick | W. Kaye | W. Berrettini | P. Monteleone | J. Coleman | A. Julià | S. Marsal | K. Egberts | A. Tsitsika | A. Rotondo | A. Schosser | V. Leppä | G. Knudsen | P. Giusti-Rodríguez | James E Mitchell | T. Reichborn‐Kjennerud | F. Tozzi | E. Docampo | Y. Kim | V. Ricca | K. Kirk | J. Hudson | M. Fichter | R. Levitan | R. Rabionet | K. Klump | M. Strober | J. Baker | A. Juréus | A. Kaplan | D. Woodside | P. Santonastaso | J. Jordan | M. Dmitrzak-Węglarz | K. Mitchell | E. V. van Furth | A. Raevuori | A. Keski-Rahkonen | J. DeSocio | K. Halmi | I. Meulenbelt | J. Treasure | C. Boni | G. Kalsi | I. Boehm | F. Ritschel | K. Hanscombe | K. Purves | A. Monteleone | F. Rybakowski | A. Karwautz | Katrin Mannik | J. O'toole | S. Helder | A. Tortorella | F. Gonidakis | K. Tziouvas | Z. Yilmaz | G. Wagner | B. Świątkowska | C. Olsen | T. Wade | N. Micali | K. Kiezebrink | A. Favaro | T. Ando | R. Burghardt | H. Imgart | D. Degortes | E. Tenconi | A. Słopień | L. Šlachtová | M. Roberts | Dong Li | S. Yao | C. Norring | Anorexia Nervosa Genetics Initiative | M. Föcker | A. Birgegård | J. Larsen | L. Lilenfeld | M. S. '. Slof-Op 't Landt | H. Brandt | M. Cassina | S. Crawford | D. Kaminská | M. L. La Via | S. McDevitt | Melissa A. Munn-Chernoff | Richard Parker | V. B. Perica | Katharina Buehren | J. Giuranna | Monica Gratacos Mayora | M. Tyszkiewicz-Nwafor | Bochao D Lin | Craig Johnson | C. Hübel | E. F. Furth | H. Papežová | L. Foretova | M. Navratilova | Bochao D. Lin | T. Reichborn-Kjennerud | Marion E. Roberts | Paola Giusti-Rodríguez | N. Martin | S. Gordon | M. Zwaan | Héléna A. Gaspar | Shuyang Yao | Maria C. Via | Annemarie A. Elburg | Eating Disorder Working Group of the Psychiatric Genomics Consortium | N. Martin | N. Martin | N. Martin | M. S. ’. Slof-Op 't Landt | Annemarie Elburg | J. Kennedy | A. Elburg | Steven F. Crawford | Ilka Boehm | Franziska Ritschel | Anu Raevuori | M. C. Via

[1]  O. Andreassen,et al.  Psychiatric genetics and the structure of psychopathology , 2019, Molecular Psychiatry.

[2]  P. O’Reilly,et al.  Genomics of body fat percentage may contribute to sex bias in anorexia nervosa , 2018, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[3]  Hunna J. Watson,et al.  The Anorexia Nervosa Genetics Initiative (ANGI): Overview and methods. , 2018, Contemporary clinical trials.

[4]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[5]  Patrick F. Sullivan,et al.  Using three-dimensional regulatory chromatin interactions from adult and fetal cortex to interpret genetic results for psychiatric disorders and cognitive traits , 2018 .

[6]  Tyrone D. Cannon,et al.  Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence , 2018, Nature Genetics.

[7]  Ann John,et al.  Mental health in UK Biobank: development, implementation and results from an online questionnaire completed by 157 366 participants , 2018, BJPsych Open.

[8]  Yan Li,et al.  Easy Hi-C: A simple efficient protocol for 3D genome mapping in small cell populations , 2018, bioRxiv.

[9]  P. Lichtenstein,et al.  Assessing the evidence for shared genetic risks across psychiatric disorders and traits , 2017, Psychological Medicine.

[10]  S. Ehrlich,et al.  The Science Behind the Academy for Eating Disorders' Nine Truths About Eating Disorders , 2017, European eating disorders review : the journal of the Eating Disorders Association.

[11]  G. Breen,et al.  The Common Genetic Architecture of Anxiety Disorders , 2017, bioRxiv.

[12]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[13]  Mary Goldman,et al.  Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics , 2016, Nature Communications.

[14]  Jakob Grove,et al.  Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder , 2017, bioRxiv.

[15]  Robert M. Maier,et al.  Causal associations between risk factors and common diseases inferred from GWAS summary data , 2017, Nature Communications.

[16]  M. Daly,et al.  The iPSYCH2012 case–cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders , 2017, Molecular Psychiatry.

[17]  Gerome Breen,et al.  Genetic identification of brain cell types underlying schizophrenia , 2017, Nature Genetics.

[18]  J. Poulet,et al.  Regulation of body weight and energy homeostasis by neuronal Cell adhesion molecule 1 , 2017, Nature Neuroscience.

[19]  Raymond Walters,et al.  Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa. , 2017, The American journal of psychiatry.

[20]  N. Martin,et al.  The Anorexia Nervosa Genetics Initiative: Study description and sample characteristics of the Australian and New Zealand arm , 2017, The Australian and New Zealand journal of psychiatry.

[21]  S. Tonegawa,et al.  Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors , 2017, Neuron.

[22]  Nils Y. Hammerla,et al.  Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study , 2017, PloS one.

[23]  Evan Z. Macosko,et al.  Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types , 2017, Nature Genetics.

[24]  Kamryn T. Eddy,et al.  Lifetime and 12-month prevalence of eating disorders amongst women in mid-life: a population-based study of diagnoses and risk factors , 2017, BMC Medicine.

[25]  Job Dekker,et al.  Mapping the 3D genome: Aiming for consilience , 2016, Nature Reviews Molecular Cell Biology.

[26]  S. Dulawa,et al.  Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit , 2016, PloS one.

[27]  A. Keski-Rahkonen,et al.  Epidemiology of eating disorders in Europe: prevalence, incidence, comorbidity, course, consequences, and risk factors , 2016, Current opinion in psychiatry.

[28]  Daning Lu,et al.  Chromosome conformation elucidates regulatory relationships in developing human brain , 2016, Nature.

[29]  K. Campbell,et al.  Neuronal Dystroglycan Is Necessary for Formation and Maintenance of Functional CCK-Positive Basket Cell Terminals on Pyramidal Cells , 2016, The Journal of Neuroscience.

[30]  John C Marioni,et al.  A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor , 2016, F1000Research.

[31]  Krishna R. Kalari,et al.  Beta-Poisson model for single-cell RNA-seq data analyses , 2016, Bioinform..

[32]  May E. Montasser,et al.  Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci , 2016, Diabetes.

[33]  Benjamin A. Logsdon,et al.  Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia , 2016, Nature Neuroscience.

[34]  Tom R. Gaunt,et al.  LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis , 2016, bioRxiv.

[35]  Jonathan P. Beauchamp,et al.  Genome-wide association study identifies 74 loci associated with educational attainment , 2016, Nature.

[36]  Janice M. Fullerton,et al.  Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder , 2016, bioRxiv.

[37]  C. Lüscher,et al.  Accumbal D1R Neurons Projecting to Lateral Hypothalamus Authorize Feeding , 2015, Neuron.

[38]  P. Lichtenstein,et al.  Etiological overlap between obsessive‐compulsive disorder and anorexia nervosa: a longitudinal cohort, multigenerational family and twin study , 2015, World psychiatry : official journal of the World Psychiatric Association.

[39]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[40]  Joseph K. Pickrell,et al.  Detection and interpretation of shared genetic influences on 42 human traits , 2015, Nature Genetics.

[41]  V. Bello,et al.  The dystroglycan: nestled in an adhesome during embryonic development. , 2015, Developmental biology.

[42]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[43]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[44]  C. Bulik,et al.  Genetics and Epigenetics of Eating Disorders. , 2015, Advances in genomics and genetics.

[45]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[46]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[47]  Jack Euesden,et al.  PRSice: Polygenic Risk Score software , 2014, Bioinform..

[48]  Aaron J. Sams,et al.  Accounting for eXentricities: Analysis of the X Chromosome in GWAS Reveals X-Linked Genes Implicated in Autoimmune Diseases , 2014, bioRxiv.

[49]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[50]  Naomi R. Wray,et al.  Genetic Studies of Major Depressive Disorder: Why Are There No Genome-wide Association Study Findings and What Can We Do About It? , 2014, Biological Psychiatry.

[51]  H. Monyer,et al.  Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour , 2014, Molecular Psychiatry.

[52]  A. Munnich,et al.  Identification of a novel ARL13B variant in a Joubert syndrome-affected patient with retinal impairment and obesity , 2014, European Journal of Human Genetics.

[53]  B. Berger,et al.  Efficient Bayesian mixed model analysis increases association power in large cohorts , 2014, Nature Genetics.

[54]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[55]  N. Cox,et al.  Obesity-associated variants within FTO form long-range functional connections with IRX3 , 2014, Nature.

[56]  Janice M. Fullerton,et al.  Genome-wide association study reveals two new risk loci for bipolar disorder , 2014, Nature Communications.

[57]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[58]  Jonathan J. Evans,et al.  Prevalence and Characteristics of Probable Major Depression and Bipolar Disorder within UK Biobank: Cross-Sectional Study of 172,751 Participants , 2013, PloS one.

[59]  Simon C. Potter,et al.  Genome-wide Association Analysis Identifies 14 New Risk Loci for Schizophrenia , 2013, Nature Genetics.

[60]  D. Koller,et al.  Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals , 2013, Genome research.

[61]  Reiko Nishihara,et al.  Prospective analysis of body mass index, physical activity, and colorectal cancer risk associated with β-catenin (CTNNB1) status. , 2013, Cancer research.

[62]  Hunna J. Watson,et al.  Update on the treatment of anorexia nervosa: review of clinical trials, practice guidelines and emerging interventions , 2012, Psychological Medicine.

[63]  E. Anton,et al.  Arl13b in primary cilia regulates the migration and placement of interneurons in the developing cerebral cortex. , 2012, Developmental cell.

[64]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[65]  Susan C. Brown,et al.  The dystrophin–glycoprotein complex in brain development and disease , 2012, Trends in Neurosciences.

[66]  D. Whiteman,et al.  Cohort profile: the QSkin Sun and Health Study. , 2012, International journal of epidemiology.

[67]  Tanya M. Teslovich,et al.  Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.

[68]  J. Dostie,et al.  Discovering genome regulation with 3C and 3C-related technologies. , 2012, Biochimica et biophysica acta.

[69]  Michael T. McManus,et al.  An siRNA Screen in Pancreatic Beta Cells Reveals a Role for Gpr27 in Insulin Production , 2012, PLoS genetics.

[70]  Albert J. Vilella,et al.  A high-resolution map of human evolutionary constraint using 29 mammals , 2011, Nature.

[71]  I. Ntalla,et al.  A genome-wide association study of anorexia nervosa , 2011, Molecular Psychiatry.

[72]  A. Mitchell,et al.  Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. , 2011, Archives of general psychiatry.

[73]  O. Mors,et al.  The Danish Psychiatric Central Research Register , 2011, Scandinavian journal of public health.

[74]  Mark I McCarthy,et al.  Genomic inflation factors under polygenic inheritance , 2011, European Journal of Human Genetics.

[75]  P. Magistretti,et al.  Absence of association between specific common variants of the obesity‐related FTO gene and psychological and behavioral eating disorder phenotypes , 2011, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[76]  S. Zhong,et al.  A Genome-Wide Association Study of Upper Aerodigestive Tract Cancers Conducted within the INHANCE Consortium , 2011, PLoS genetics.

[77]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[78]  Patrick F. Sullivan,et al.  LifeGene—a large prospective population-based study of global relevance , 2010, European Journal of Epidemiology.

[79]  K. Campbell,et al.  Distinct Functions of Glial and Neuronal Dystroglycan in the Developing and Adult Mouse Brain , 2010, The Journal of Neuroscience.

[80]  K. Berridge,et al.  The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders , 2010, Brain Research.

[81]  Tanya M. Teslovich,et al.  Biological, Clinical, and Population Relevance of 95 Loci for Blood Lipids , 2010, Nature.

[82]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[83]  R. Deane,et al.  Protein S controls hypoxic/ischemic blood-brain barrier disruption through the TAM receptor Tyro3 and sphingosine 1-phosphate receptor. , 2010, Blood.

[84]  Michael D. Cole,et al.  Upregulation of c-MYC in cis through a Large Chromatin Loop Linked to a Cancer Risk-Associated Single-Nucleotide Polymorphism in Colorectal Cancer Cells , 2010, Molecular and Cellular Biology.

[85]  Christopher A. Haiman,et al.  The 8q24 cancer risk variant rs6983267 demonstrates long-range interaction with MYC in colorectal cancer , 2009, Nature Genetics.

[86]  Frederico A. C. Azevedo,et al.  Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain , 2009, The Journal of comparative neurology.

[87]  Joshua M. Korn,et al.  Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs , 2008, Nature Genetics.

[88]  Colin A. Johnson,et al.  Mutations in the cilia gene ARL13B lead to the classical form of Joubert syndrome. , 2008, American journal of human genetics.

[89]  R. Dalle Grave,et al.  Compulsive exercise to control shape or weight in eating disorders: prevalence, associated features, and treatment outcome. , 2008, Comprehensive psychiatry.

[90]  I. Borecki,et al.  Polymorphisms near EXOC4 and LRGUK on chromosome 7q32 are associated with Type 2 Diabetes and fasting glucose; The NHLBI Family Heart Study , 2008, BMC Medical Genetics.

[91]  Job Dekker,et al.  Gene Regulation in the Third Dimension , 2008, Science.

[92]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[93]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[94]  R. Kessler,et al.  The Prevalence and Correlates of Eating Disorders in the National Comorbidity Survey Replication , 2007, Biological Psychiatry.

[95]  Joshua S. Yuan,et al.  A type IV P-type ATPase affects insulin-mediated glucose uptake in adipose tissue and skeletal muscle in mice. , 2006, The Journal of nutritional biochemistry.

[96]  C. Bulik,et al.  Relationships between features associated with vomiting in purging-type eating disorders. , 2005, The International journal of eating disorders.

[97]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[98]  N. Craddock,et al.  Design of Case‐controls Studies with Unscreened Controls , 2005, Annals of human genetics.

[99]  C. Bulik,et al.  Comorbidity of anxiety disorders with anorexia and bulimia nervosa. , 2004, The American journal of psychiatry.

[100]  B. Devlin,et al.  Genetic analysis of bulimia nervosa: methods and sample description. , 2004, The International journal of eating disorders.

[101]  Anjen Chenn,et al.  Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors , 2002, Science.

[102]  J. Ioannidis,et al.  Replication validity of genetic association studies , 2001, Nature Genetics.

[103]  T. Saito,et al.  An evolutionarily conserved G-protein coupled receptor family, SREB, expressed in the central nervous system. , 2000, Biochemical and biophysical research communications.

[104]  David Goldman,et al.  A search for susceptibility loci for anorexia nervosa: methods and sample description , 2000, Biological Psychiatry.

[105]  J. Morgan Genetic epidemiology of binging and vomiting , 1998, British Journal of Psychiatry.

[106]  R. Kessler,et al.  The World Health Organization Composite International Diagnostic Interview short‐form (CIDI‐SF) , 1998 .

[107]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[108]  H. Eysenck,et al.  A revised version of the Psychoticism scale. , 1985 .