AVT-183 diamond wing flow field characteristics Part 1: Varying leading-edge roughness and the effects on flow separation onset
暂无分享,去创建一个
Christian Breitsamter | Andreas Hövelmann | Florian Knoth | F. Knoth | C. Breitsamter | A. Hövelmann
[1] Dietrich Hummel,et al. The International Vortex Flow Experiment 2 (VFE-2): Background, objectives and organization ☆ , 2013 .
[2] Neal T. Frink. Numerical Analysis of Incipient Separation on 53 Deg Swept Diamond Wing , 2015 .
[3] Miguel R. Visbal,et al. Unsteady aerodynamics of nonslender delta wings , 2005 .
[4] M. Grawunder,et al. AVT-183 diamond wing flow field characteristics Part 2: Experimental analysis of leading-edge vortex formation and progression , 2016 .
[5] Russell M. Cummings,et al. Vortical Flow Prediction of the AVT-183 Diamond Wing , 2015 .
[6] Ernst Heinrich Hirschel,et al. Three-Dimensional Attached Viscous Flow: Basic Principles and Theoretical Foundations , 2013 .
[7] James M. Luckring,et al. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 1; Sharp Leading Edge; [conducted in the Langley National Transonic Facility (NTF)] , 1996 .
[8] Stephan M. Hitzel,et al. Vortex Development on the AVT-183 Diamond Wing Configuration - Numerical and Experimental Findings , 2015 .
[9] Donald J. Malloy,et al. Numerical Investigations of Flow Separation on the AVT-183 53 Degree Swept Diamond Wing Configuration , 2015 .
[10] William H. Rae,et al. Low-Speed Wind Tunnel Testing , 1966 .
[11] S. B. Zakharov. The Effect of Rounding the Leading Edges on the Characteristics of Separated Flow Past Delta Wings of Low Aspect Radio , 1990 .
[12] Christian Breitsamter,et al. Objectives, approach, and scope for the AVT-183 diamond-wing investigations , 2016 .
[13] R. K. Nangia,et al. Numerical study of blunt leading edge separation on a 53 degree swept diamond wing (STO AVT-183) using the Edge and Cobalt flow solvers , 2015 .
[14] Russell M. Cummings,et al. Integrated Computational/Experimental Approach to Unmanned Combat Air Vehicle Stability and Control Estimation , 2012 .
[15] R. M. Kulfan. WING AIRFOIL SHAPE EFFECTS ON THE DEVELOMENT OF LEADING-EDGE VORTICES , 1979 .
[16] O. J. Boelens,et al. A Reduced-Complexity Investigation of Blunt Leading-Edge Separation Motivated by UCAV Aerodynamics , 2015 .
[17] Stephan M. Hitzel,et al. Vortex development on the AVT-183 diamond wing configuration – numerical and experimental findings , 2016 .
[18] James M. Luckring,et al. A Survey of Factors Affecting Blunt Leading-Edge Separation for Swept and Semi-Slender Wings , 2010 .
[19] Donald J. Malloy,et al. Applicability of Hybrid RANS/LES Models in Predicting Separation Onset of the AVT-183 Diamond Wing , 2015 .
[20] Stephan M. Hitzel,et al. Flow Physics Analyses of a Generic Unmanned Combat Aerial Vehicle Configuration , 2012 .
[21] Arthur Rizzi,et al. CFD study of vortex separation phenomena on blunt diamond wing , 2015 .
[22] Ernst Heinrich Hirschel,et al. Three-Dimensional Attached Viscous Flow , 2014 .
[23] Christian Breitsamter,et al. Numerical and Theoretical Considerations for the Design of the AVT-183 Diamond-Wing Experimental Investigations , 2015 .
[24] Christian Breitsamter,et al. Leading-Edge Geometry Effects on the Vortex Formation of a Diamond-Wing Configuration , 2013 .
[25] Serge Toxopeus,et al. Incompressible flow calculations of blunt leading edge separation for a 53 degree swept diamond wing (Invited) , 2015 .
[26] Christian Breitsamter,et al. Leading-Edge Roughness Effects on the Flow Separation Onset of the AVT-183 Diamond Wing Configuration (Invited) , 2015 .
[27] James M. Luckring,et al. What was learned from the new VFE-2 experiments ☆ , 2013 .
[28] M. Grawunder,et al. Experimental Analyses on the Flow Field Characteristics of the AVT-183 Diamond Wing Configuration (Invited) , 2015 .
[29] Ismet Gursul,et al. Review of Unsteady Vortex Flows over Slender Delta Wings , 2005 .
[30] Dan D. Vicroy,et al. Static and Forced-Oscillation Tests of a Generic Unmanned Combat Air Vehicle , 2012 .
[31] Melissa B. Rivers,et al. Experimental Investigation of the NASA Common Research Model , 2014 .
[32] N. G. Verhaagen,et al. Leading-Edge Radius Effects on Aerodynamic Characteristics of 50-Degree Delta Wings , 2012 .