Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies

Raspberry-like magnetic nanoclusters are synthesized and subsequently self-assembled to form a bulk metamaterial exhibiting strong isotropic optical magnetism in visible light. The magnetic response of the nanoclusters (metamolecules) and of the final assembled material are measured by independent optical experiments. The validity of the effective permeability parameter is probed by spectroscopic ellipsometry at variable incidence. Numerical simulations confirm the measurements.

[1]  Douglas C. Montgomery,et al.  Applied Statistics and Probability for Engineers, Third edition , 1994 .

[2]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[3]  Christine K. McGinn,et al.  Raspberry-like metamolecules exhibiting strong magnetic resonances. , 2015, ACS nano.

[4]  J. Leng,et al.  Microfluidic-induced growth and shape-up of three-dimensional extended arrays of densely packed nanoparticles. , 2013, ACS nano.

[5]  N. L. Sharma Nondipole optical scattering from liquids and nanoparticles. , 2007, Physical review letters.

[6]  F. Capolino,et al.  Effect of irregularities of nanosatellites position and size on collective electric and magnetic plasmonic resonances in spherical nanoclusters. , 2013, Optics express.

[7]  V. Kravets,et al.  Plasmonic resonances in optomagnetic metamaterials based on double dot arrays. , 2010, Optics express.

[8]  Lei Zhang,et al.  Negative Index Materials Using Simple Short Wire Pairs , 2006 .

[9]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[10]  T. Bürgi,et al.  Adsorption of Gold and Silver Nanoparticles on Polyelectrolyte Layers and Growth of Polyelectrolyte Multilayers: An In Situ ATR-IR Study , 2013 .

[11]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[12]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[13]  Sergei A. Tretyakov,et al.  Model of isotropic resonant magnetism in the visible range based on core-shell clusters , 2009 .

[14]  M. Wegener,et al.  Negative-index metamaterial at 780 nm wavelength. , 2006, Optics letters.

[15]  J. Dionne,et al.  A metafluid exhibiting strong optical magnetism. , 2013, Nano letters.

[16]  David R. Smith,et al.  Electromagnetic parameter retrieval from inhomogeneous metamaterials. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Carsten Rockstuhl,et al.  Validity of effective material parameters for optical fishnet metamaterials , 2010 .

[18]  D. Smith,et al.  Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Carsten Rockstuhl,et al.  Self-assembled plasmonic core-shell clusters with an isotropic magnetic dipole response in the visible range. , 2011, ACS nano.

[20]  J. Schenck The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. , 1996, Medical physics.

[21]  Jean-Baptiste Salmon,et al.  Gold Nanooctahedra with Tunable Size and Microfluidic-Induced 3D Assembly for Highly Uniform SERS-Active Supercrystals , 2015 .

[22]  Vladimir M. Agranovich,et al.  Spatial dispersion and negative refraction of light , 2006 .

[23]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[24]  A. Fery,et al.  Protein-Assisted Assembly of Modular 3D Plasmonic Raspberry-like Core/Satellite Nanoclusters: Correlation of Structure and Optical Properties , 2016, ACS nano.

[25]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[26]  P. Tabeling,et al.  Microevaporators for kinetic exploration of phase diagrams. , 2006, Physical review letters.

[27]  É. Duguet,et al.  Resonant isotropic optical magnetism of plasmonic nanoclusters in visible light , 2015 .

[28]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[29]  U. Bach,et al.  DNA‐Directed Self‐Assembly of Core‐Satellite Plasmonic Nanostructures: A Highly Sensitive and Reproducible Near‐IR SERS Sensor , 2013 .

[30]  V. Agranovich,et al.  Crystal Optics with Spatial Dispersion and Excitons , 1984 .

[31]  N Engheta,et al.  Negative effective permeability and left-handed materials at optical frequencies. , 2004, Optics express.

[32]  V. Shalaev Transforming Light , 2008, Science.

[33]  Michael I. Mishchenko,et al.  Calculation of the T matrix and the scattering matrix for ensembles of spheres , 1996 .

[34]  Ting Xu,et al.  All-angle negative refraction and active flat lensing of ultraviolet light , 2013, Nature.

[35]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.