Reproducible flaws unveil electrostatic aspects of semiconductor electrochemistry

[1]  Damien Thompson,et al.  Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. , 2017, Nature nanotechnology.

[2]  J. Justin Gooding,et al.  Single-molecule electrical contacts on silicon electrodes under ambient conditions , 2017, Nature Communications.

[3]  D. Cahen,et al.  Chemical Modification of Semiconductor Surfaces for Molecular Electronics. , 2017, Chemical reviews.

[4]  R. Andreu,et al.  Intermolecular interactions in electroactive thiol monolayers probed by linear scan voltammetry , 2017 .

[5]  S. Shaik,et al.  Electrostatic and Charge-Induced Methane Activation by a Concerted Double C-H Bond Insertion. , 2017, Journal of the American Chemical Society.

[6]  D. Aswal,et al.  Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. , 2016, Chemical reviews.

[7]  A. M. Saitta,et al.  One-step electric-field driven methane and formaldehyde synthesis from liquid methanol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc04269d Click here for additional data file. Click here for additional data file. , 2016, Chemical science.

[8]  F. Pietrucci,et al.  eld driven methane and formaldehyde synthesis from liquid methanol † , 2017 .

[9]  D. Cahen,et al.  Molecular Electronics by Chemical Modification of Semiconductor Surfaces , 2016, 1612.03482.

[10]  Sason Shaik,et al.  Oriented electric fields as future smart reagents in chemistry. , 2016, Nature chemistry.

[11]  E. Molins,et al.  Tuning and enhancement of the Mizoroki–Heck reaction using polarized Pd nanocomposite carbon aerogels , 2016 .

[12]  G. Wallace,et al.  TEMPO Monolayers on Si(100) Electrodes: Electrostatic Effects by the Electrolyte and Semiconductor Space-Charge on the Electroactivity of a Persistent Radical. , 2016, Journal of the American Chemical Society.

[13]  E. Levillain,et al.  A generalized lateral interactions function to fit voltammetric peaks of self-assembled monolayers , 2016 .

[14]  B. Fabre Functionalization of Oxide-Free Silicon Surfaces with Redox-Active Assemblies. , 2016, Chemical reviews.

[15]  Gordon G. Wallace,et al.  Electrostatic catalysis of a Diels–Alder reaction , 2016, Nature.

[16]  Florian Schwarz,et al.  Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. , 2016, Nature nanotechnology.

[17]  J. Gooding,et al.  Light Activated Electrochemistry: Light Intensity and pH Dependence on Electrochemical Performance of Anthraquinone Derivatized Silicon , 2016 .

[18]  M. Coote,et al.  Experimental demonstration of pH-dependent electrostatic catalysis of radical reactions† †Electronic supplementary information (ESI) available: Detailed experimental methods and data. See DOI: 10.1039/c5sc01307k , 2015, Chemical science.

[19]  J. Neaton,et al.  Single-molecule diodes with high rectification ratios through environmental control. , 2015, Nature nanotechnology.

[20]  M. Coote,et al.  Origin and scope of long-range stabilizing interactions and associated SOMO-HOMO conversion in distonic radical anions. , 2013, Journal of the American Chemical Society.

[21]  M. Kanan,et al.  Interfacial electric field effects on a carbene reaction catalyzed by Rh porphyrins. , 2013, Journal of the American Chemical Society.

[22]  R. Hamers,et al.  Conformational disorder enhances electron transfer through alkyl monolayers: ferrocene on conductive diamond. , 2013, Journal of the American Chemical Society.

[23]  J. Yates,et al.  Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. , 2012, Chemical reviews.

[24]  T. Bendikov,et al.  Controlling Space Charge of Oxide-Free Si by in Situ Modification of Dipolar Alkyl Monolayers , 2012 .

[25]  Fernando Galembeck,et al.  Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[26]  M. Paddon-Row,et al.  Surface-bound molecular rulers for probing the electrical double layer. , 2012, Journal of the American Chemical Society.

[27]  Arnan Mitchell,et al.  Influence of electric field on SERS: frequency effects, intensity changes, and susceptible bonds. , 2012, Journal of the American Chemical Society.

[28]  K. Gaus,et al.  Electrochemical "switching" of Si(100) modular assemblies. , 2012, Journal of the American Chemical Society.

[29]  Matthew W. Kanan,et al.  An electric field-induced change in the selectivity of a metal oxide-catalyzed epoxide rearrangement. , 2012, Journal of the American Chemical Society.

[30]  K. Jolliffe,et al.  Characterization of peptide immobilization on an acetylene terminated surface via click chemistry , 2011 .

[31]  Samuel L. Kleinman,et al.  Surface-Enhanced Raman Spectroelectrochemistry of TTF-Modified Self-Assembled Monolayers. , 2011, The journal of physical chemistry letters.

[32]  J. Justin Gooding,et al.  Wet Chemical Routes to the Assembly of Organic Monolayers on Silicon Surfaces via the Formation of Si—C Bonds: Surface Preparation, Passivation and Functionalization , 2010 .

[33]  S. Shaik,et al.  External Electric Field Can Control the Catalytic Cycle of Cytochrome P450cam: A QM/MM Study , 2010 .

[34]  J. Gooding,et al.  Wet chemical routes to the assembly of organic monolayers on silicon surfaces via the formation of Si-C bonds: surface preparation, passivation and functionalization. , 2010, Chemical Society reviews.

[35]  Zhijun Jiang,et al.  Electrofluidic gating of a chemically reactive surface. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[36]  Fawaz Aldabbagh,et al.  Click Chemistry Approach , 2010 .

[37]  P. Hiberty,et al.  Charge-shift bonding and its manifestations in chemistry. , 2009, Nature chemistry.

[38]  J. Gooding,et al.  Silicon (100) electrodes resistant to oxidation in aqueous solutions: an unexpected benefit of surface acetylene moieties. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[39]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.

[40]  J. Gooding,et al.  Optimization of Click Chemistry of Ferrocene Derivatives on Acetylene-Functionalized Silicon(100) Surfaces , 2008 .

[41]  A. Bard,et al.  Electrostatic electrochemistry at insulators. , 2008, Nature materials.

[42]  David J. Kasik,et al.  Motivation and challenges , 2007, SIGGRAPH Courses.

[43]  Kristopher A Kilian,et al.  Functionalization of acetylene-terminated monolayers on Si(100) surfaces: a click chemistry approach. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[44]  D. Cahen,et al.  How important is the interfacial chemical bond for electron transport through alkyl chain monolayers? , 2006, Nano letters.

[45]  D K Aswal,et al.  Self assembled monolayers on silicon for molecular electronics. , 2006, Analytica chimica acta.

[46]  Andrew Nelson,et al.  Co-refinement of multiple-contrast neutron/X-ray reflectivity data using MOTOFIT , 2006 .

[47]  P. Allongue,et al.  Well-defined carboxyl-terminated alkyl monolayers grafted onto H-Si(111): packing density from a combined AFM and quantitative IR study. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[48]  P. Allongue,et al.  Truly quantitative XPS characterization of organic monolayers on silicon: study of alkyl and alkoxy monolayers on H-Si(111). , 2005, Journal of the American Chemical Society.

[49]  P. Ball Silicon still supreme , 2005, Nature materials.

[50]  Eric R. Ziegel,et al.  Statistics and Chemometrics for Analytical Chemistry , 2004, Technometrics.

[51]  Sason Shaik,et al.  External electric field will control the selectivity of enzymatic-like bond activations. , 2004, Journal of the American Chemical Society.

[52]  O. Pokrovsky,et al.  Evidence of the Existence of Three Types of Species at the Quartz−Aqueous Solution Interface at pH 0−10: XPS Surface Group Quantification and Surface Complexation Modeling , 2002 .

[53]  David J. Schiffrin,et al.  A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups , 2000, Nature.

[54]  P. Hiberty,et al.  Charge-Shift Bonding in Group IVB Halides: A Valence Bond Study of MH3−Cl (M = C, Si, Ge, Sn, Pb) Molecules , 1999 .

[55]  Miquel Solà,et al.  Analysis of Solvent Effects on the Menshutkin Reaction , 1991 .

[56]  N. Lewis,et al.  Cyclic voltammetry at semiconductor photoelectrodes. 1. Ideal surface-attached redox couples with ideal semiconductor behavior , 1988 .

[57]  Jürgen Heinze,et al.  Cyclic Voltammetry—“Electrochemical Spectroscopy”. New Analytical Methods (25) , 1984 .

[58]  Sason Shaik,et al.  A qualitative valence-bond approach to organic reactivity , 1982 .

[59]  Sason Shaik,et al.  What happens to molecules as they react? A valence bond approach to reactivity , 1981 .

[60]  E. Laviron,et al.  General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules , 1980 .

[61]  E. Laviron General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems , 1979 .

[62]  E. Laviron,et al.  Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry , 1974 .

[63]  E. Laviron Surface linear potential sweep voltammetry , 1974 .

[64]  D. E. Yates,et al.  Site-binding model of the electrical double layer at the oxide/water interface , 1974 .

[65]  S. Benzer,et al.  High Inverse Voltage Germanium Rectifiers , 1949 .