Flatness and defect of non-linear systems: introductory theory and examples

We introduce flat systems, which are equivalent to linear ones via a special type of feedback called endogenous. Their physical properties are subsumed by a linearizing output and they might be regarded as providing another nonlinear extension of Kalman's controllability. The distance to flatness is measured by a non-negative integer, the defect. We utilize differential algebra where flatness- and defect are best defined without distinguishing between input, state, output and other variables. Many realistic classes of examples are flat. We treat two popular ones: the crane and the car with n trailers, the motion planning of which is obtained via elementary properties of plane curves. The three non-flat examples, the simple, double and variable length pendulums, are borrowed from non-linear physics. A high frequency control strategy is proposed such that the averaged systems become flat.

[1]  A. Stephenson XX. On induced stability , 1908 .

[2]  D. Hilbert,et al.  Über den Begriff der Klasse von Differentialgleichungen , 1912 .

[3]  M. Zervos,et al.  Sur l'intégration de certains systèmes indéterminés d'équations différentielles. , 1913 .

[4]  Edmund Taylor Whittaker,et al.  A treatise on the analytical dynamics of particles and rigid bodies , 1927 .

[5]  José Carlos Goulart de Siqueira,et al.  Differential Equations , 1919, Nature.

[6]  A. Seidenberg,et al.  SOME BASIC THEOREMS IN DIFFERENTIAL ALGEBRA (CHARACTERISTIC p, ARBITRARY) , 1952 .

[7]  Joseph Johnson,et al.  Kahler Differentials and Differential Algebra , 1969 .

[8]  T. Mckeown Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.

[9]  P. Cohn Free rings and their relations , 1973 .

[10]  T. Willmore Algebraic Geometry , 1973, Nature.

[11]  Thomas W. Hungerford The Structure of Fields , 1974 .

[12]  Semyon Meerkov,et al.  Principle of vibrational control: Theory and applications , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[13]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[14]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[15]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[16]  D. Claude Everything You Always Wanted to Know about Linearization , 1986 .

[17]  Joseph Bentsman Vibrational control of a class of nonlinear systems by nonlinear multiplicative vibrations , 1987 .

[18]  Chun-Wen Ll,et al.  Functional reproducibility of general multivariable analytic non-linear systems , 1987 .

[19]  Chun-Wen Li,et al.  Decoupling theory of general multivariable analytic non-linear systems , 1987 .

[20]  Eduardo D. Sontag,et al.  Finite-dimensional open-loop control generators for non-linear systems , 1988 .

[21]  J. Lévine,et al.  On dynamic feedback linearization , 1989 .

[22]  M. Fliess Automatique et corps différentiels , 1989 .

[23]  Prime Differential Ideals in Nonlinear Rational Control Systems , 1989 .

[24]  Jessy W. Grizzle,et al.  Rank invariants of nonlinear systems , 1989 .

[25]  Martin Hasler,et al.  Questioning the Classic State-Space Description Via Circuit Examples , 1990 .

[26]  E. Sontag,et al.  Generalized Controller Canonical Forms for Linear and Nonlinear Dynamics , 1990 .

[27]  J. Lévine,et al.  MODELLING AND NONLINEAR CONTROL OF AN OVERHEAD CRANE , 1990 .

[28]  W. Shadwick,et al.  Absolute equivalence and dynamic feedback linearization , 1990 .

[29]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[30]  R. Salminen,et al.  Control study with a pilot crane , 1990 .

[31]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[32]  Jean-Paul Laumond,et al.  Controllability of a multibody mobile robot , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[33]  H. Sussmann,et al.  Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[34]  Sette Diop,et al.  Elimination in control theory , 1991, Math. Control. Signals Syst..

[35]  V. N. Bogaevski,et al.  Algebraic methods in nonlinear perturbation theory , 1991 .

[36]  J. Lévine,et al.  Sufficient conditions for dynamic state feedback linearization , 1991 .

[37]  M. Fliess Some basic structural properties of generalized linear systems , 1991 .

[38]  M. Fliess,et al.  A simplified approach of crane control via a generalized state-space model , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[39]  M. Fliess,et al.  On Differentially Flat Nonlinear Systems , 1992 .

[40]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[41]  Philippe Martin Contribution a l'etude des systemes differentiellement plats , 1992 .

[42]  Philippe Martin,et al.  Flatness and motion planning : the car with n trailers. , 1992 .

[43]  Sette Diop,et al.  Differential-Algebraic Decision Methods and some Applications to System Theory , 1992, Theor. Comput. Sci..

[44]  Georges Bastin,et al.  Dynamic feedback linearization of nonholonomic wheeled mobile robots , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[45]  M. Fliess,et al.  Sur les systèmes non linéaires différentiellement plats , 1992 .

[46]  J. Coron,et al.  Smooth stabilizing time-varying control laws for a class of nonlinear systems. application to mobile robots , 1992 .

[47]  M. Fliess A remark on Willems' trajectory characterization of linear controllability , 1992 .

[48]  B. Jakubczyk,et al.  Remarks on Equivalence and Linearization of Nonlinear Systems , 1992 .

[49]  D. Normand-Cyrot,et al.  An introduction to motion planning under multirate digital control , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[50]  Alberto Bressan,et al.  On differential systems with quadratic impulses and their applications to Lagrangian mechanics , 1993 .

[51]  T. Glad,et al.  An Algebraic Approach to Linear and Nonlinear Control , 1993 .

[52]  Pierre Rouchon,et al.  Generalized state variable representation for a simplified crane description , 1993 .

[53]  Eduardo Sontag Universal nonsingular controls , 1993 .

[54]  Philippe Martin An intrinsic sufficient condition for regular decoupling , 1993 .

[55]  M. Fliess,et al.  Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund , 1993 .

[56]  Michel Fliess,et al.  Défaut d'un système non linéaire et commande haute fréquence , 1993 .

[57]  M. Fliess,et al.  Flatness, motion planning and trailer systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[58]  D. J. Acheson,et al.  A pendulum theorem , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[59]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[60]  John Baillieul Stable average motions of mechanical systems subject to periodic forcing , 1993 .

[61]  M. Fliess,et al.  A DIFFERENTIAL GEOMETRIC SETTING FOR DYNAMIC EQUIVALENCE AND DYNAMIC LINEARIZATION , 1994 .

[62]  J. Coron Linearized Control Systems and Applications to Smooth Stabilization , 1994 .

[63]  Pierre Rouchon Necessary Condition and Genericity of Dynamic Feedback Linearization , 1994 .

[64]  Richard M. Murray,et al.  A motion planner for nonholonomic mobile robots , 1994, IEEE Trans. Robotics Autom..

[65]  Philippe Martin,et al.  Differential flatness and defect: an overview , 1995 .

[66]  S. Shankar Sastry,et al.  A multisteering trailer system: conversion into chained form using dynamic feedback , 1995, IEEE Trans. Robotics Autom..

[67]  S. Bhat Controllability of Nonlinear Systems , 2022 .