Electric micropropulsion systems

Abstract With the development of microspacecraft, the field of electrical micropropulsion is a rapidly expanding discipline. New ideas are being explored constantly and a review of the current state of technological development in the field will be useful. This review deals with electrostatic and electromagnetic micropropulsion systems that are either miniaturization attempts of existing technologies or novel systems in their own right. A brief discussion of the development of microspacecraft and a general overview of the types of micropropulsion are given. The essential mechanism of operation of each electrical micropropulsion system is described and recent progress in the development of these systems is explored, giving latest available data of their performance parameters.

[1]  Darren L. Hitt,et al.  Mems-Based Satellite Micropropulsion Via Catalyzed Hydrogen Peroxide Decomposition , 2013 .

[2]  Marc D. Rayman,et al.  Dawn: A mission in development for exploration of main belt asteroids Vesta and Ceres , 2006 .

[3]  Andrew D. Ketsdever,et al.  Micropropulsion for small spacecraft , 2000 .

[4]  A Fully Integrated Micro‐Magnetometer/Microspacecraft for Multipoint Measurements: the Free‐Flyer Magnetometer , 2013 .

[5]  Georg Herdrich,et al.  A Very Low Power Arcjet (VELARC) for Small Satellite Missions , 2011 .

[6]  Rob Sherwood,et al.  The EO-1 autonomous science agent , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[7]  Simone Ciaralli,et al.  PPT Development for Nanosatellite Applications: Experimental Results , 2015, IEEE Transactions on Plasma Science.

[8]  Vaios Lappas,et al.  Direct thrust measurement of a permanent magnet helicon double layer thruster , 2011 .

[9]  C. Charles,et al.  Thrust Measurements of a Small Scale Helicon Double Layer Thruster , 2011 .

[10]  J. Mitterauer,et al.  Micropropulsion for small spacecraft: a new challenge for field effect electric propulsion and microstructured liquid metal ion sources , 2004 .

[11]  David H. Lehman,et al.  Results from the Deep Space 1 technology validation mission , 2000 .

[12]  Michael D. West,et al.  Testing a Helicon Double Layer Thruster Immersed in a Space-Simulation Chamber , 2008 .

[13]  Carole Rossi,et al.  Design, fabrication and modeling of solid propellant microrocket-application to micropropulsion , 2002 .

[14]  John P. W. Stark,et al.  Scaling of a Colloid Thruster system for microNewton to milliNewton Thrust levels , 2007 .

[15]  V. Lancellotti,et al.  Design of 50 W helicon plasma thruster , 2009 .

[16]  Juergen Mueller,et al.  Thruster Options for Microspacecraft: A Review and Evaluation of State-of-the-Art and Emerging Technologies , 2000 .

[17]  Daniel E. Hastings,et al.  Three-dimensional plasma particle-in-cell calculations of ion thruster backflow contamination , 1996 .

[18]  Michael Keidar,et al.  Development of Micro-Vacuum Arc Thruster with Extended Lifetime , 2009 .

[19]  Herbert Shea,et al.  Performance of a micro-fabricated Colloid thruster system , 2009 .

[20]  Robert C. Moore,et al.  The MESSENGER mission to Mercury: spacecraft and mission design , 2001 .

[21]  W. Steiger,et al.  Indium Field Emission Electric Propulsion Microthruster Experimental Characterization , 2004 .

[22]  Daniele Pavarin,et al.  Thruster development set-up for the helicon plasma hydrazine combined micro research project , 2011 .

[23]  J. Ziemer Laser ablation microthruster technology , 2002 .

[24]  Simon S. Ang,et al.  A MEMS-based solid propellant microthruster with Au/Ti igniter , 2005 .

[25]  A. Wokaun,et al.  Micropropulsion Using a Laser Ablation Jet , 2004 .

[26]  Sejin Kwon,et al.  Design, fabrication, and testing of MEMS solid propellant thruster array chip on glass wafer , 2010 .

[27]  Martin Tajmar,et al.  Propulsion for Nanosatellites , 2011 .

[28]  Michael J. Patterson,et al.  Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1 , 2001 .

[29]  Hans Leiter,et al.  Experimental Validation of RIT Micro-Propulsion Subsystem Performance at EPL , 2013 .

[30]  J. Foster Compact Plasma Accelerator for Micropropulsion Applications , 2001 .

[31]  I. Katz,et al.  Fundamentals of Electric Propulsion: Ion and Hall Thrusters , 2008 .

[32]  Danick Briand,et al.  Matrix of 10 × 10 addressed solid propellant microthrusters: Review of the technologies , 2006 .

[33]  J. R. French Warm Gas Propulsion for Small Satellites , 1997 .

[34]  A. Wokaun,et al.  Micropropulsion using laser ablation , 2004 .

[35]  Masato Tanaka,et al.  Research and Development of Osaka Institute of Technology PROITERES Nano-Satellite Series with Electric Rocket Engines , 2013 .

[36]  P. Khiew,et al.  Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds , 2012 .

[37]  Denis Estublier,et al.  The SMART-1 Hall Effect Thruster Around the Moon: In Flight Experience , 2005 .

[38]  M. Delpech,et al.  Flight demonstration of formation flying capabilities for future missions (NEAT Pathfinder) , 2014 .

[39]  H. W. Loeb,et al.  Design of High-Power High-Specific Impulse RF-Ion Thruster , 2011 .

[40]  M. Tanaka,et al.  Microstrip antenna with solar cells for microsatellites , 1995 .

[41]  H. E. Barber,et al.  Microthrusters Employing Catalytically Reacted N2—O2—H2 Gas Mixtures, Tridyne , 1970 .

[42]  J. Khachan,et al.  Downstream plasma characteristics from a single loop antenna in a helicon processing reactor , 1999 .

[43]  Eric Rogers,et al.  The Applicability of Pulsed Plasma Thrusters to Rendezvous and Docking of Cubesats , 2013 .

[44]  Michele Coletti,et al.  Low Power Ablative Pulsed Plasma Thrusters , 2013 .

[45]  José A. Moríñigo,et al.  Solid–gas surface effect on the performance of a MEMS-class nozzle for micropropulsion , 2010 .

[46]  J. Mueller,et al.  Leak-tight piezoelectric microvalve for high-pressure gas micropropulsion , 2004, Journal of Microelectromechanical Systems.

[47]  H. Seifert,et al.  Rocket Propulsion Elements , 1963 .

[48]  Sven G. Bilen,et al.  The potential of miniature electrodynamic tethers to enhance capabilities of femtosatellites , 2012, ICOPS 2012.

[49]  Kar-Ming Cheung,et al.  Deep Space 1 , 2016 .

[50]  Peter Erichsen Performance Evaluation of Spacecraft Propulsion Systems in Relation to Mission Impulse Requirements , 1997 .

[51]  Henrik Kratz,et al.  A Hybrid Cold Gas Microthruster System for Spacecraft , 2002 .

[52]  Jason M. Makela,et al.  Progress on Re-generable Field Emission Cathodes for Low- Power Electric Propulsion , 2007 .

[53]  F. Rüdenauer Field emission devices for space applications , 2007 .

[54]  Juergen Mueller,et al.  Thruster Optins for Microspacecraft: A Review and Evaluation of Existing Hardware and Emerging Technologies , 1997 .

[55]  Satomi Kawamoto,et al.  Precise numerical simulations of electrodynamic tethers for an active debris removal system , 2006 .

[56]  Lilac Muller Miniaturization Methods for Deep Space Microspacecraft , 1994 .

[57]  Naoji Yamamoto,et al.  Effects of Magnetic Field Configuration on Thrust Performance in A Miniature Microwave Discharge Ion Thruster , 2007 .

[58]  Michele Coletti,et al.  Design of a Two-Stage PPT for Cubesat Application , 2009 .

[59]  N. Yamamoto,et al.  Microwave-Plasma Interaction in a Miniature Plasma Ion Thruster , 2013 .

[60]  Thales Alenia,et al.  Electric Propulsion Diagnostic Package for the FEEP thruster on Lisa Path Finder: Review of status of achievements at TAS-I , 2007 .

[61]  Martin Sweeting,et al.  Nitrous oxide as a rocket propellant , 2001 .

[62]  David Krejci,et al.  Endurance testing of a pulsed plasma thruster for nanosatellites , 2013 .

[63]  David H. Lehman,et al.  Deep space one: NASA's first Deep-Space technology validation mission , 1997 .

[64]  Steve Oleson,et al.  Chemical Microthruster Options , 1996 .

[65]  C. Law,et al.  Influence of Cathode Shape on Vacuum Arc Thruster Performance and Operation , 2015, IEEE Transactions on Plasma Science.

[66]  John R. Brophy,et al.  NASA's Deep Space 1 ion engine , 2002 .

[67]  Self-consistent Simulation of the Coupling Between Plasma and Neutral Gas in N-RIT , 2011 .

[68]  V. I. Petrov,et al.  Diffusion of a low-soluble impurity in a solid matrix , 2004 .

[69]  Klaus Schilling,et al.  Design of the UWE-4 Picosatellite Orbit Control System using Vacuum-Arc-Thrusters , 2013 .

[70]  Herbert Shea,et al.  Design and fabrication of an integrated MEMS-based colloid micropropulsion system , 2007 .

[71]  Gabriel D. Roy,et al.  Advances in Chemical Propulsion : Science to Technology , 2001 .

[72]  A. Anders,et al.  A Theoretical Analysis of Vacuum Arc Thruster and Vacuum Arc Ion Thruster Performance , 2008, IEEE Transactions on Plasma Science.

[73]  Michele Coletti,et al.  Design and Testing of a Micro Pulsed Plasma Thruster for Cubesat Application , 2011 .

[74]  P. J. Cilliers,et al.  ZACUBE‐1 Space Weather Mission: Characterize the SuperDARN HF Radar Antenna Array at SANAE‐IV , 2013 .

[75]  C. Charles,et al.  Performance characterization of a helicon double layer thruster using direct thrust measurements , 2011 .

[76]  Daniele Pavarin,et al.  EXPERIMENTAL SET-UP TO TEST A 50 W HELICON PLASMA THRUSTER , 2009 .

[77]  R. McCormick,et al.  Colloid thrusters for the new millennium, ST7 DRS mission , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[78]  S. Lee,et al.  The CubeSat Approach to Space Access , 2008, 2008 IEEE Aerospace Conference.

[79]  Donald Platt A Monopropellant Milli-Newton Thruster System for Attitude Control of Nanosatellites , 2002 .

[80]  George A. Boyarko,et al.  Catalyzed combustion of hydrogen–oxygen in platinum tubes for micro-propulsion applications , 2005 .

[81]  T. Shimizu,et al.  Hollow Cathode Thruster Design and Development for Small Satellites , 2011 .

[82]  A. Sengupta Magnetic confinement in a ring-cusp ion thruster discharge plasma , 2009 .

[83]  Stephen Gabriel,et al.  Understanding hollow cathode thrust production mechanisms , 2009 .

[84]  Michael Curt Elwenspoek,et al.  Nozzle fabrication for micropropulsion of a microsatellite , 2009 .

[85]  Gregory G. Spanjers,et al.  Micropropulsion Options for the TechSat21 Space-Based Radar Flight , 1999 .

[86]  S. J. Pottinger,et al.  Micro Pulsed Plasma Thruster Development , 2007 .

[87]  P. Peterson,et al.  A High Specific Impulse Two-Stage Hall Thruster with Plasma Lens Focusing , 2001 .

[88]  Jochen Schein,et al.  Microvacuum Arc Thruster Design for a Cubesat Class Satellite , 2002 .

[89]  Dan M. Goebel,et al.  Magnetically Shielded Miniature Hall Thruster: Development and Initial Testing , 2013 .

[90]  K. Anflo,et al.  Flight demonstration of new thruster and green propellant technology on the PRISMA satellite , 2009 .

[91]  Robert Zee,et al.  The Design and Test of a Compact Propulsion System for CanX Nanosatellite Formation Flying , 2005 .

[92]  Robert M. Winglee,et al.  Simulation and laboratory validation of magnetic nozzle effects for the high power helicon thruster , 2007 .

[93]  Klaus Schilling,et al.  Innovative Vacuum Arc Thruster for CubeSat Constellations , 2013 .

[94]  Günter Dr. Kornfeld,et al.  Physics and Evolution of HEMP-Thrusters , 2007 .

[95]  Jose Gonzalez del Amo European Space Agency Activities in Electric Propulsion , 2013 .

[96]  G. Zank,et al.  Micro-propulsion in space via dust - plasma thruster , 2007 .

[97]  Bryan Palaszewski,et al.  PROPELLANT TECHNOLOGIES : FAR-REACHING BENEFITS FOR AERONAUTICAL AND SPACE-VEHICLE PROPULSION , 1998 .

[98]  Claus Braxmaier,et al.  Feasibility of a down-scaled HEMP-Thruster , 2011 .

[99]  MorrisT.,et al.  Study of an electrostatic micropropulsion system for nanosatellites , 2011 .

[100]  Juergen Mueller,et al.  A Review and Applicability Assessment of MEMS Based Microvalve Technologies for Microspacecraft Propulsions , 1999 .

[101]  L. DeLuca,et al.  Theoretical analysis of hydrides in solid and hybrid rocket propulsion , 2012 .

[102]  Daniele Pavarin,et al.  Development of Plasma Codes for the Design of Mini-Helicon Thrusters , 2011 .

[103]  M. Martinez-Sanchez,et al.  Spacecraft Electric Propulsion—An Overview , 1998 .

[104]  P. Turchi,et al.  Pulsed Plasma Thruster , 1998 .

[105]  W. Folkner,et al.  Mission analysis for the Laser Interferometer Space Antenna (LISA) mission , 2003 .

[106]  Eberhard Gill,et al.  PRISMA - AN AUTONOMOUS FORMATION FLYING MISSION , 2006 .

[107]  L. Garrigues,et al.  Two-dimensional model of a stationary plasma thruster , 2002 .

[108]  C. Charles,et al.  Thrust measurements in a low-magnetic field high-density mode in the helicon double layer thruster , 2010 .

[109]  Andrew D. Ketsdever,et al.  Systems Considerations and Design Options for' Microspacecraft Propulsion Systems , 1999 .

[110]  C. Phipps,et al.  Laser ablation of organic coatings as a basis for micropropulsion , 2004 .

[111]  Kjell Anflo,et al.  Green space propulsion: Opportunities and prospects , 2014 .

[112]  Pelle Rangsten,et al.  Miniaturization of components and systems for space using MEMS-technology , 2007 .

[113]  C. Russell,et al.  Messenger mission to Mercury , 2007 .

[114]  Ulrich Johann,et al.  Parametric Study of HEMP-Thruster Downscaling to $ {\mu }$ N Thrust Levels , 2015, IEEE Transactions on Plasma Science.

[115]  M. Schiebl,et al.  Development of a green bipropellant hydrogen peroxide thruster for attitude control on satellites , 2013 .

[116]  Mathias Pietzka,et al.  Development of Vacuum Arc Thrusters and Diagnostic Tools , 2011 .

[117]  P. Ferrer,et al.  Miniaturization of electrostatic ion engines by ionization and acceleration coupling , 2011 .

[118]  Naoji Yamamoto,et al.  Effect of Antenna Configuration on Thrust Performance in a Miniature Microwave Discharge Ion Engine , 2005 .

[119]  P. Lozano,et al.  Performance Characteristics of a Linear Ionic Liquid Electrospray Thruster , 2005 .

[120]  E. Choueiri Fundamental difference between the two variants of Hall thrusters - SPT and TAL , 2001 .

[121]  Michael Keidar,et al.  Analysis of Micro-Vacuum Arc Thrusters for Earth-Orbiting and Lunar Missions , 2011 .

[122]  Vlad Hruby,et al.  CubeSat Propulsion Using Electrospray Thrusters , 2009 .

[123]  Stephen Gabriel,et al.  Development of a Differential Radio Frequency Ion Thruster for Precision Spacecraft Control , 2009 .

[125]  C. Charles,et al.  An experimental investigation of alternative propellants for the helicon double layer thruster , 2008 .

[126]  Zhaoying Zhou,et al.  Development of a MEMS based colloid thruster with sandwich structure , 2005 .

[127]  Robert P. Hoyt,et al.  Harnessing the "Orbital Battery" for Propulsion via Energy- Harvesting Electrodynamic Tethers , 2011 .

[128]  Michele Coletti,et al.  Development of a Microthruster Module for Nanosatellite Applications , 2011 .