REAL-TIME WATER VAPOR SENSING WITH SUOMINET -- TODAY AND TOMORROW

SuomiNet, a university-based GPS network provides real-time atmospheric sensing capability via the Internet for research and education. SuomiNet is funded by the U.S. National Science Foundation and university costshare, and is managed by the University Corporation for Atmospheric Research (UCAR). We present examples of real time PW data products currently provided by SuomiNet, and describe real time slant delay analysis and applications that are proposed as an augmentation of SuomiNet.

[1]  Gyu-Ho Lim,et al.  Variational assimilation of slant-path wet delay measurements from a hypothetical ground-based GPS network. Part I: Comparison with precipitable water assimilation , 2003 .

[2]  J. C. Liljegren,et al.  A multichannel radiometric profiler of temperature, humidity, and cloud liquid , 2003 .

[3]  Ying-Hwa Kuo,et al.  Comparison of GPS slant wet delay measurements with model simulations during the passage of a squall line , 2002 .

[4]  Anthony R. Lowry,et al.  Vertical profiling of atmospheric refractivity from ground‐based GPS , 2002 .

[5]  Junhong Wang,et al.  Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity , 2002 .

[6]  Alexander E. MacDonald,et al.  Diagnosis of Three-Dimensional Water Vapor Using a GPS Network , 2002 .

[7]  A. Rius,et al.  Zenith total delay study of a mesoscale convective system: GPS observations and fine-scale modeling , 2002 .

[8]  A NEW COMPOSITE OBSERVING SYSTEM STRATEGY FOR GROUND-BASED GPS METEOROLOGY , 2002 .

[9]  S. Benjamin,et al.  3 . 2 IMPACT OF GPS-IPW DATA ON RUC FORECASTS , 2002 .

[10]  Gunnar Elgered,et al.  Climate monitoring using GPS , 2002 .

[11]  Thomas Pany Measuring and modeling the slant wet delay with GPS and the ECMWF NWP model , 2002 .

[12]  C. Rocken,et al.  GPS Water Vapor Projects Within the ARM Southern Great Plains Region , 2002 .

[13]  A study of spatial water vapor distributions by using one-way residuals of GPS phase measurements , 2001 .

[14]  Christian Rocken,et al.  Validation of line‐of‐sight water vapor measurements with GPS , 2001 .

[15]  Stanley G. Benjamin,et al.  The Role of Ground-Based GPS Meteorological Observations in Numerical Weather Prediction , 2001, GPS Solutions.

[16]  Hajime Nakamura,et al.  Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front , 2000 .

[17]  Christian Rocken,et al.  Obtaining single path phase delays from GPS double differences , 2000 .

[18]  Pedro Elosegui,et al.  The Use of GPS to Validate NWP Systems: The HIRLAM Model , 2000 .

[19]  Soroosh Sorooshian,et al.  SuomiNet: A Real-Time National GPS Network for Atmospheric Research and Education. , 2000 .

[20]  G. Ruffini,et al.  4D tropospheric tomography using GPS slant wet delays , 2000 .

[21]  Kenneth Holmlund,et al.  The Utilization of Statistical Properties of Satellite-Derived Atmospheric Motion Vectors to Derive Quality Indicators , 1998 .

[22]  Y. Bar-Sever,et al.  Estimating horizontal gradients of tropospheric path delay with a single GPS receiver , 1998 .

[23]  Christian Rocken,et al.  Sensing integrated water vapor along GPS ray paths , 1997 .

[24]  Ying-Hwa Kuo,et al.  Variational Assimilation of Precipitable Water Using a Nonhydrostatic Mesoscale Adjoint Model. Part I: Moisture Retrieval and Sensitivity Experiments , 1996 .

[25]  J. Fritsch,et al.  The Effects of Subcloud-Layer Diabatic Processes on Cold Air Damming , 1992 .