Stratification of Controllability and Observability Pairs - Theory and Use in Applications
暂无分享,去创建一个
[1] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .
[2] F. Puerta,et al. Brunowsky local form of a holomorphic family of pairs of matrices , 1997 .
[3] Jean Jacques Loiseau,et al. Feedback canonical forms of singular systems , 1991, Kybernetika.
[4] James Demmel,et al. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.
[5] P. Lancaster,et al. Invariant subspaces of matrices with applications , 1986 .
[6] F Rikus Eising,et al. Between controllable and uncontrollable , 1984 .
[7] B. Kågström,et al. Bounds for the Distance Between Nearby Jordan and Kronecker Structures in a Closure Hierarchy , 2003 .
[8] P. Johansson. StratiGraph user's guide , 2003 .
[9] Froilán M. Dopico,et al. A Note on Generic Kronecker Orbits of Matrix Pencils with Fixed Rank , 2008, SIAM J. Matrix Anal. Appl..
[10] Adrian S. Lewis,et al. Pseudospectral Components and the Distance to Uncontrollability , 2005, SIAM J. Matrix Anal. Appl..
[11] A. Bunse-Gerstner,et al. Feedback design for regularizing descriptor systems , 1999 .
[12] A. Markus,et al. The change of the Jordan structure of a mtrix under small perturbations , 1983 .
[13] D. Pervouchine. Hierarchy of Closures of Matrix Pencils , 2004 .
[14] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..
[15] J. Willems,et al. Topological classification and structural stability of linear systems , 1980 .
[16] Ian H. Witten,et al. DEVELOPER'S GUIDE , 2001 .
[17] SATORU IWATA,et al. Combinatorial Analysis of Singular Matrix Pencils , 2007, SIAM J. Matrix Anal. Appl..
[18] J. M. Gracia,et al. Perturbation of linear control systems , 1989 .
[19] A. Pokrzywa,et al. On perturbations and the equivalence orbit of a matrix pencil , 1986 .
[20] Froilán M. Dopico,et al. Low Rank Perturbation of Kronecker Structures without Full Rank , 2007, SIAM J. Matrix Anal. Appl..
[21] Alan Edelman,et al. The dimension of matrices (matrix pencils) with given Jordan (Kronecker) canonical forms , 1995 .
[22] James Demmel,et al. Accurate solutions of ill-posed problems in control theory , 1986, 1986 25th IEEE Conference on Decision and Control.
[23] P. Johansson. Matrix canonical structure toolbox , 2006 .
[24] P. Johansson. StratiGraph developer's guide , 2006 .
[25] V. Arnold. ON MATRICES DEPENDING ON PARAMETERS , 1971 .
[26] J. Berg,et al. Unfolding the zero structure of a linear control system , 1997 .
[27] D. Eisenbud,et al. Young diagrams and determinantal varieties , 1980 .
[28] Erik Elmroth,et al. Computation and presentation of graphs displaying closure hierarchies of Jordan and Kronecker structures , 2001, Numer. Linear Algebra Appl..
[29] M. I. García-Planas,et al. Stratification of linear systems. Bifurcation diagrams for families of linear systems , 1999 .
[30] Ming Gu,et al. New Methods for Estimating the Distance to Uncontrollability , 2000, SIAM J. Matrix Anal. Appl..
[31] Erik Elmroth,et al. The Set of 2-by-3 Matrix Pencils - Kronecker Structures and Their Transitions under Perturbations , 1996, SIAM J. Matrix Anal. Appl..
[32] James Demmel,et al. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.
[33] Ming Gu. Finding Well-Conditioned Similarities to Block-Diagonalize Nonsymmetric Matrices Is NP-Hard , 1995, J. Complex..
[34] Juan-Miguel Gracia,et al. Nearest pair with more nonconstant invariant factors and pseudospectrum , 1999 .
[35] Michael L. Overton,et al. Measures for Robust Stability and Controllability , 2009 .
[36] Pavol Brunovský,et al. A classification of linear controllable systems , 1970, Kybernetika.
[37] Diederich Hinrichsen,et al. A pencil approach to high gain feedback and generalized state space systems , 1995, Kybernetika.
[38] María Isabel García-Planas,et al. Regularity of the Brunovsky-Kronecker Stratification , 2000, SIAM J. Matrix Anal. Appl..
[39] C. Paige. Properties of numerical algorithms related to computing controllability , 1981 .
[40] William C. Waterhouse. The codimension of singular matrix pairs , 1984 .
[41] Alexei A. Mailybaev. Uncontrollability for Linear Autonomous Multi-input Dynamical Systems Depending on Parameters , 2003, SIAM J. Control. Optim..
[42] B. Kågström,et al. Orbit and Bundle Stratification for Controllability and Observability Matrix Pairs in StratiGraph , 2004 .
[43] H. D. Boer,et al. Semi-stability of sums of partial multiplicities under additive perturbation , 1980 .
[44] F. R. Gantmakher. The Theory of Matrices , 1984 .
[45] Andreas Varga. On designing least order residual generators for fault detection and isolation , 2007 .
[46] Ming Gu,et al. Fast Methods for Estimating the Distance to Uncontrollability , 2006, SIAM J. Matrix Anal. Appl..
[47] Peter Lancaster,et al. The theory of matrices , 1969 .
[48] D. Hinrichsen,et al. Orbit closures of singular matrix pencils , 1992 .
[49] Klaus Bongartz,et al. On Degenerations and Extensions of Finite Dimensional Modules , 1996 .
[50] Immaculada De Hoyos. Points of continuity of the Kronecker canonical form , 1990 .
[51] J. Clotet,et al. Estimating distances from quadruples satisfying stability properties to quadruples not satisfying them , 2001 .