Stratification of Controllability and Observability Pairs - Theory and Use in Applications

Cover relations for orbits and bundles of controllability and observability pairs associated with linear time-invariant systems are derived. The cover relations are combinatorial rules acting on integer sequences, each representing a subset of the Jordan and singular Kronecker structures of the corresponding system pencil. By representing these integer sequences as coin piles, the derived stratification rules are expressed as minimal coin moves between and within these piles, which satisfy and preserve certain monotonicity properties. The stratification theory is illustrated with two examples from systems and control applications, a mechanical system consisting of a thin uniform platform supported at both ends by springs, and a linearized Boeing 747 model. For both examples, nearby uncontrollable systems are identified as subsets of the complete closure hierarchy for the associated system pencils.

[1]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .

[2]  F. Puerta,et al.  Brunowsky local form of a holomorphic family of pairs of matrices , 1997 .

[3]  Jean Jacques Loiseau,et al.  Feedback canonical forms of singular systems , 1991, Kybernetika.

[4]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part II: software and applications , 1993, TOMS.

[5]  P. Lancaster,et al.  Invariant subspaces of matrices with applications , 1986 .

[6]  F Rikus Eising,et al.  Between controllable and uncontrollable , 1984 .

[7]  B. Kågström,et al.  Bounds for the Distance Between Nearby Jordan and Kronecker Structures in a Closure Hierarchy , 2003 .

[8]  P. Johansson StratiGraph user's guide , 2003 .

[9]  Froilán M. Dopico,et al.  A Note on Generic Kronecker Orbits of Matrix Pencils with Fixed Rank , 2008, SIAM J. Matrix Anal. Appl..

[10]  Adrian S. Lewis,et al.  Pseudospectral Components and the Distance to Uncontrollability , 2005, SIAM J. Matrix Anal. Appl..

[11]  A. Bunse-Gerstner,et al.  Feedback design for regularizing descriptor systems , 1999 .

[12]  A. Markus,et al.  The change of the Jordan structure of a mtrix under small perturbations , 1983 .

[13]  D. Pervouchine Hierarchy of Closures of Matrix Pencils , 2004 .

[14]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..

[15]  J. Willems,et al.  Topological classification and structural stability of linear systems , 1980 .

[16]  Ian H. Witten,et al.  DEVELOPER'S GUIDE , 2001 .

[17]  SATORU IWATA,et al.  Combinatorial Analysis of Singular Matrix Pencils , 2007, SIAM J. Matrix Anal. Appl..

[18]  J. M. Gracia,et al.  Perturbation of linear control systems , 1989 .

[19]  A. Pokrzywa,et al.  On perturbations and the equivalence orbit of a matrix pencil , 1986 .

[20]  Froilán M. Dopico,et al.  Low Rank Perturbation of Kronecker Structures without Full Rank , 2007, SIAM J. Matrix Anal. Appl..

[21]  Alan Edelman,et al.  The dimension of matrices (matrix pencils) with given Jordan (Kronecker) canonical forms , 1995 .

[22]  James Demmel,et al.  Accurate solutions of ill-posed problems in control theory , 1986, 1986 25th IEEE Conference on Decision and Control.

[23]  P. Johansson Matrix canonical structure toolbox , 2006 .

[24]  P. Johansson StratiGraph developer's guide , 2006 .

[25]  V. Arnold ON MATRICES DEPENDING ON PARAMETERS , 1971 .

[26]  J. Berg,et al.  Unfolding the zero structure of a linear control system , 1997 .

[27]  D. Eisenbud,et al.  Young diagrams and determinantal varieties , 1980 .

[28]  Erik Elmroth,et al.  Computation and presentation of graphs displaying closure hierarchies of Jordan and Kronecker structures , 2001, Numer. Linear Algebra Appl..

[29]  M. I. García-Planas,et al.  Stratification of linear systems. Bifurcation diagrams for families of linear systems , 1999 .

[30]  Ming Gu,et al.  New Methods for Estimating the Distance to Uncontrollability , 2000, SIAM J. Matrix Anal. Appl..

[31]  Erik Elmroth,et al.  The Set of 2-by-3 Matrix Pencils - Kronecker Structures and Their Transitions under Perturbations , 1996, SIAM J. Matrix Anal. Appl..

[32]  James Demmel,et al.  The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I: theory and algorithms , 1993, TOMS.

[33]  Ming Gu Finding Well-Conditioned Similarities to Block-Diagonalize Nonsymmetric Matrices Is NP-Hard , 1995, J. Complex..

[34]  Juan-Miguel Gracia,et al.  Nearest pair with more nonconstant invariant factors and pseudospectrum , 1999 .

[35]  Michael L. Overton,et al.  Measures for Robust Stability and Controllability , 2009 .

[36]  Pavol Brunovský,et al.  A classification of linear controllable systems , 1970, Kybernetika.

[37]  Diederich Hinrichsen,et al.  A pencil approach to high gain feedback and generalized state space systems , 1995, Kybernetika.

[38]  María Isabel García-Planas,et al.  Regularity of the Brunovsky-Kronecker Stratification , 2000, SIAM J. Matrix Anal. Appl..

[39]  C. Paige Properties of numerical algorithms related to computing controllability , 1981 .

[40]  William C. Waterhouse The codimension of singular matrix pairs , 1984 .

[41]  Alexei A. Mailybaev Uncontrollability for Linear Autonomous Multi-input Dynamical Systems Depending on Parameters , 2003, SIAM J. Control. Optim..

[42]  B. Kågström,et al.  Orbit and Bundle Stratification for Controllability and Observability Matrix Pairs in StratiGraph , 2004 .

[43]  H. D. Boer,et al.  Semi-stability of sums of partial multiplicities under additive perturbation , 1980 .

[44]  F. R. Gantmakher The Theory of Matrices , 1984 .

[45]  Andreas Varga On designing least order residual generators for fault detection and isolation , 2007 .

[46]  Ming Gu,et al.  Fast Methods for Estimating the Distance to Uncontrollability , 2006, SIAM J. Matrix Anal. Appl..

[47]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[48]  D. Hinrichsen,et al.  Orbit closures of singular matrix pencils , 1992 .

[49]  Klaus Bongartz,et al.  On Degenerations and Extensions of Finite Dimensional Modules , 1996 .

[50]  Immaculada De Hoyos Points of continuity of the Kronecker canonical form , 1990 .

[51]  J. Clotet,et al.  Estimating distances from quadruples satisfying stability properties to quadruples not satisfying them , 2001 .