Propositional Proofs in Frege and Extended Frege Systems (Abstract)

We discuss recent results on the propositional proof complexity of Frege proof systems, including some recently discovered quasipolynomial size proofs for the pigeonhole principle and the Kneser-Lovasz theorem. These are closely related to formalizability in bounded arithmetic.

[1]  Graham Wrightson,et al.  Automation of Reasoning , 1983 .

[2]  Samuel R. Buss,et al.  Annals of Pure and Applied Logic , 2022 .

[3]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[4]  Emil Jerábek,et al.  Dual weak pigeonhole principle, Boolean complexity, and derandomization , 2004, Annals of Pure and Applied Logic.

[5]  Peter Dybjer,et al.  Induction-recursion and initial algebras , 2003, Ann. Pure Appl. Log..

[6]  Juhani Karhumäki,et al.  Computer Science - Theory and Applications , 2014, Lecture Notes in Computer Science.

[7]  Samuel R. Buss,et al.  Are there Hard Examples for Frege Systems , 1995 .

[8]  Jirí Matousek,et al.  A Combinatorial Proof of Kneser’s Conjecture* , 2004, Comb..

[9]  Phuong Nguyen,et al.  The provably total NP search problems of weak second order bounded arithmetic , 2011, Ann. Pure Appl. Log..

[10]  外史 竹内 Bounded Arithmetic と計算量の根本問題 , 1996 .

[11]  Samuel R. Buss,et al.  Short Proofs of the Kneser-Lovász Coloring Principle , 2015, ICALP.

[12]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[13]  Samuel R. Buss,et al.  Polynomial size proofs of the propositional pigeonhole principle , 1987, Journal of Symbolic Logic.

[14]  Graham Wrightson,et al.  Automation of reasoning--classical papers on computational logic , 2012 .

[15]  Samuel R. Buss,et al.  Propositional Proof Complexity An Introduction , 1999 .

[16]  Samuel R. Buss,et al.  Improved witnessing and local improvement principles for second-order bounded arithmetic , 2014, ACM Trans. Comput. Log..

[17]  Iddo Tzameret,et al.  Short Proofs for the Determinant Identities , 2015, SIAM J. Comput..

[18]  Nathan Segerlind,et al.  The Complexity of Propositional Proofs , 2007, Bull. Symb. Log..

[19]  Jeremy Avigad Plausibly hard combinatorial tautologies , 1996, Proof Complexity and Feasible Arithmetics.

[20]  Samuel R. Buss,et al.  QUASIPOLYNOMIAL SIZE FREGE PROOFS OF FRANKL’S THEOREM ON THE TRACE OF SETS , 2016, The Journal of Symbolic Logic.

[21]  Samuel R. Buss,et al.  Propositional Consistency Proofs , 1991, Ann. Pure Appl. Log..

[22]  Gabriel Istrate,et al.  Proof Complexity and the Kneser-Lovász Theorem , 2014, SAT.

[23]  Stephen Cook,et al.  Corrections for "On the lengths of proofs in the propositional calculus preliminary version" , 1974, SIGA.

[24]  Pavel Pudlák,et al.  Twelve Problems in Proof Complexity , 2008, CSR.

[25]  Paul Beame,et al.  Proof complexity , 2004, Computational Complexity Theory.

[26]  Toniann Pitassi,et al.  Propositional Proof Complexity: Past, Present and Future , 2001, Bull. EATCS.

[27]  Avi Wigderson,et al.  Computational Complexity Theory , 2004, IAS / Park City mathematics series.

[28]  Samuel R. Buss,et al.  Propositional proofs and reductions between NP search problems , 2012, Ann. Pure Appl. Log..

[29]  Samuel R. Buss Polynomial Size Proofs of the Propositional Pigeonhole Principle , 1987, J. Symb. Log..