A deep look into the dagum family of isotropic covariance functions

Abstract The Dagum family of isotropic covariance functions has two parameters that allow for decoupling of the fractal dimension and the Hurst effect for Gaussian random fields that are stationary and isotropic over Euclidean spaces. Sufficient conditions that allow for positive definiteness in $\mathbb{R}^d$ of the Dagum family have been proposed on the basis of the fact that the Dagum family allows for complete monotonicity under some parameter restrictions. The spectral properties of the Dagum family have been inspected to a very limited extent only, and this paper gives insight into this direction. Specifically, we study finite and asymptotic properties of the isotropic spectral density (intended as the Hankel transform) of the Dagum model. Also, we establish some closed-form expressions for the Dagum spectral density in terms of the Fox–Wright functions. Finally, we provide asymptotic properties for such a class of spectral densities.

[1]  L. Chamorro,et al.  On streamwise velocity spectra models with fractal and long-memory effects , 2021 .

[2]  E. Porcu,et al.  Zastavnyi operators and positive definite radial functions , 2018, Statistics & Probability Letters.

[3]  X. Emery,et al.  Stein hypothesis and screening effect for covariances with compact support , 2020 .

[4]  Marc G. Genton,et al.  Nonseparable, Space-Time Covariance Functions with Dynamical Compact Supports , 2020 .

[5]  M. Bevilacqua,et al.  Estimation and prediction using generalized Wendland covariance functions under fixed domain asymptotics , 2016, The Annals of Statistics.

[6]  B. Kniehl,et al.  Analytical Solution to DGLAP Integro-Differential Equation in a Simple Toy-Model with a Fixed Gauge Coupling , 2016, Quantum Reports.

[7]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[8]  E. Porcu,et al.  Bernoulli–Euler beams with random field properties under random field loads: fractal and Hurst effects , 2014 .

[9]  D. Daley,et al.  Dimension walks and Schoenberg spectral measures , 2014 .

[10]  M. R. Medar,et al.  Solution to Bethe–Salpeter equation via Mellin–Barnes transform , 2012, 1205.6257.

[11]  M. Stein,et al.  On Some Local, Global and Regularity Behaviour of Some Classes of Covariance Functions , 2012 .

[12]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[13]  L. Teo,et al.  Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure , 2008, 0807.0022.

[14]  Jorge Mateu,et al.  The Dagum family of isotropic correlation functions , 2007, 0705.0456.

[15]  Jorge Mateu,et al.  A note on decoupling of local and global behaviours for the Dagum Random Field , 2007 .

[16]  Jorge Mateu,et al.  Modelling spatio-temporal data: A new variogram and covariance structure proposal , 2007 .

[17]  Hao Zhang Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[18]  T. Gneiting,et al.  Stochastic Models That Separate Fractal Dimension and the Hurst Effect , 2001, SIAM Rev..

[19]  Haotian Hang,et al.  Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[20]  Michael L. Stein,et al.  The screening effect in Kriging , 2002 .

[21]  Tilmann Gneiting,et al.  Criteria of Pólya type for radial positive definite functions , 2001 .

[22]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[23]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[24]  John T. Kent,et al.  Estimating the Fractal Dimension of a Locally Self-similar Gaussian Process by using Increments , 1997 .

[25]  Michael L. Stein,et al.  Bounds on the Efficiency of Linear Predictions Using an Incorrect Covariance Function , 1990 .

[26]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[27]  G. Matheron Principles of geostatistics , 1963 .

[28]  A. Yaglom Some Classes of Random Fields in n-Dimensional Space, Related to Stationary Random Processes , 1957 .

[29]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[30]  E. M. Wright,et al.  The Asymptotic Expansion of the Generalized Hypergeometric Function , 1935 .

[31]  C. Fox The Asymptotic Expansion of Generalized Hypergeometric Functions , 1928 .

[32]  E. W. Barnes A New Development of the Theory of the Hypergeometric Functions , 1908 .