A unique, efficient, implantable, electromechanical, total artificial heart.

A completely implantable, one piece electromechanical total artificial heart (TAH) intended for permanent human use was developed. It consisted of left and right conically shaped pusher-plate blood pumps sandwiching a thin centerpiece with a compact, efficient electromechanical actuator. The actuator consisted of a direct current brushless motor; a planetary roller screw fit the space between the two conically shaped pusher-plates. The rotational motion of the motor was converted to the rectilinear motion of the rollerscrew to displace the left and right pusher-plates in the left master alternate mode. The diameter of the assembled TAH was 97 mm, with a central thickness of 82 mm. The overall weight was 620 g, with a displaced volume of 510 ml. The pump provided flows of 3-8 L/min with a preload of 1-15 mmHg against an afterload of 100 mmHg. The net efficiency ranged from 15% to 18%. This model showed good fit in the pericardial space of heart transplant recipients (body weight, 77 kg).

[1]  G Rosenberg,et al.  A roller screw drive for implantable blood pumps. , 1982, Transactions - American Society for Artificial Internal Organs.

[2]  Y Nosé,et al.  Intraoperative determination of mediastinal constraints for a total artificial heart. , 1991, ASAIO transactions.