Interpolating and Approximating Moving Frames Using B-splines
暂无分享,去创建一个
[1] C. R. Deboor,et al. A practical guide to splines , 1978 .
[2] Bahram Ravani,et al. Computer aided geometric design of motion interpolants , 1994 .
[3] J. Leavitt,et al. Automatic generation of 3-D envelopes , 1984 .
[4] Phillip J. McKerrow,et al. Introduction to robotics , 1991 .
[5] Rida T. Farouki,et al. Real-time CNC interpolators for Pythagorean-hodograph curves , 1996, Comput. Aided Geom. Des..
[6] Ralph R. Martin,et al. Sweeping of three-dimensional objects , 1990, Comput. Aided Des..
[7] Otto Röschel,et al. Rational motion design - a survey , 1998, Comput. Aided Des..
[8] Fujio Yamaguchi,et al. Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.
[9] Barry Joe,et al. Robust computation of the rotation minimizing frame for sweep surface modeling , 1997, Comput. Aided Des..
[10] Karim Abdel-Malek,et al. Swept volumes: void and boundary identification , 1998, Comput. Aided Des..
[11] D. C. H. Yang,et al. Nearly arc-length parameterized quintic-spline interpolation for precision machining , 1993, Comput. Aided Des..
[12] Vijay Kumar,et al. Interpolation schemes for rigid body motions , 1998, Comput. Aided Des..
[13] Ming C. Leu,et al. The sweep-envelope differential equation algorithm and its application to NC machining verification , 1997, Comput. Aided Des..
[14] Fopke Klok. Two moving coordinate frames for sweeping along a 3D trajectory , 1986, Comput. Aided Geom. Des..
[15] Gerald E. Farin,et al. Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.
[16] Bert Jüttler,et al. Cartesian spline interpolation for industrial robots , 1998, Comput. Aided Des..