Advances in Hyperspectral Image and Signal Processing

Recent advances in airborne and spaceborne hyperspectral imaging technology have provided end users with rich spectral, spatial, and temporal information, which make a plethora of applications for the analysis of large areas of the Earth surface feasible. However, a huge number of factors, such as high dimensions and size of the hyperspectral data, the lack of training samples, mixed pixels, light scattering mechanisms in the acquisition process, and different atmospheric and geometric distortions, make such data inherently nonlinear and complex, which poses extreme challenges for existing methodologies to effectively process and analyze the data sets. Hence, rigorous and innovative methodologies are required for hyperspectral image and signal processing and have become a center of attention for researchers worldwide. This paper offers a comprehensive tutorial/overview focusing specifically on hyperspectral data analysis, which is categorized into seven broad topics: classification, spectral unmixing, dimensionality reduction, resolution enhancement, hyperspectral image denoising and restoration, change detection, and fast computing. For each topic, we provide a synopsis of the state-of-the-art approaches and numerical results for validation and evaluation of different methodologies, followed by a discussion of future challenges and research directions.

[1]  Ronald Kemker,et al.  Self-Taught Feature Learning for Hyperspectral Image Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Qian Du,et al.  Unsupervised linear unmixing for change detection in multitemporal airborne hyperspectral imagery , 2005, International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005..

[3]  Minchao Ye,et al.  Hyperspectral Imagery Restoration Using Nonlocal Spectral-Spatial Structured Sparse Representation With Noise Estimation , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[4]  Jon Atli Benediktsson,et al.  Morphological Attribute Profiles for the Analysis of Very High Resolution Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Jon Atli Benediktsson,et al.  Spectral–Spatial Classification of Multispectral Images Using Kernel Feature Space Representation , 2014, IEEE Geoscience and Remote Sensing Letters.

[6]  Alan P. Schaum,et al.  Hyperspectral change detection and supervised matched filtering based on covariance equalization , 2004, SPIE Defense + Commercial Sensing.

[7]  Xue Zhang,et al.  Attraction-Repulsion Model-Based Subpixel Mapping of Multi-/Hyperspectral Imagery , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[8]  José Francisco López,et al.  Multispectral and Hyperspectral Lossless Compressor for Space Applications (HyLoC): A Low-Complexity FPGA Implementation of the CCSDS 123 Standard , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  Miguel Vélez-Reyes,et al.  Change detection in hyperspectral imagery using temporal principal components , 2006, SPIE Defense + Commercial Sensing.

[10]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[12]  Bo Du,et al.  Hyperspectral anomaly change detection with slow feature analysis , 2015, Neurocomputing.

[13]  Hairong Qi,et al.  Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[14]  David Landgrebe,et al.  Noise in Remote-Sensing Systems: The Effect on Classification Error , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Shihong Du,et al.  Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[17]  Allan Aasbjerg Nielsen,et al.  Kernel Maximum Autocorrelation Factor and Minimum Noise Fraction Transformations , 2011, IEEE Transactions on Image Processing.

[18]  Bo Du,et al.  Dimensionality Reduction and Classification of Hyperspectral Images Using Ensemble Discriminative Local Metric Learning , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Antonio J. Plaza,et al.  Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs , 2012, Journal of Real-Time Image Processing.

[20]  Gustavo Camps-Valls,et al.  Learning Relevant Image Features With Multiple-Kernel Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Allan Aasbjerg Nielsen,et al.  The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data , 2007, IEEE Transactions on Image Processing.

[22]  Trac D. Tran,et al.  Hyperspectral Image Classification Using Dictionary-Based Sparse Representation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Philip H. Swain,et al.  Remote Sensing: The Quantitative Approach , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Masashi Sugiyama,et al.  Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis , 2007, J. Mach. Learn. Res..

[25]  Eyal Ben Dor,et al.  SHALOM – A Commercial Hyperspectral Space Mission , 2015 .

[26]  Mahesh Pal Extreme‐learning‐machine‐based land cover classification , 2008, ArXiv.

[27]  Jon Atli Benediktsson,et al.  A Survey on Spectral–Spatial Classification Techniques Based on Attribute Profiles , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Angshul Majumdar,et al.  Exploiting spatiospectral correlation for impulse denoising in hyperspectral images , 2015, J. Electronic Imaging.

[29]  Antonio J. Plaza,et al.  Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Peijun Du,et al.  Fusion of Difference Images for Change Detection Over Urban Areas , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[31]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[32]  Shutao Li,et al.  A New Pan-Sharpening Method Using a Compressed Sensing Technique , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Xiaodong Li,et al.  Example-Based Super-Resolution Land Cover Mapping Using Support Vector Regression , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[34]  Chong-Yung Chi,et al.  A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing , 2009, IEEE Trans. Signal Process..

[35]  Bo Li,et al.  Remote-Sensing Image Compression Using Two-Dimensional Oriented Wavelet Transform , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Antonio J. Plaza,et al.  Robust Collaborative Nonnegative Matrix Factorization for Hyperspectral Unmixing , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Mehran Yazdi,et al.  Best rank-r tensor selection using Genetic Algorithm for better noise reduction and compression of Hyperspectral images , 2010, 2010 Fifth International Conference on Digital Information Management (ICDIM).

[38]  Johannes R. Sveinsson,et al.  Total variation based hyperspectral feature extraction , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[39]  Neal W. Aven,et al.  Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data , 2017 .

[40]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[41]  Manjunath V. Joshi,et al.  Super-Resolution of Hyperspectral Images: Use of Optimum Wavelet Filter Coefficients and Sparsity Regularization , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Jianglin Ma,et al.  Preliminary Results of Superresolution-Enhanced Angular Hyperspectral (CHRIS/Proba) Images for Land-Cover Classification , 2011, IEEE Geoscience and Remote Sensing Letters.

[43]  Jean-Yves Tourneret,et al.  Estimating the Number of Endmembers in Hyperspectral Images Using the Normal Compositional Model and a Hierarchical Bayesian Algorithm , 2010, IEEE Journal of Selected Topics in Signal Processing.

[44]  Antonio J. Plaza,et al.  Commodity cluster-based parallel processing of hyperspectral imagery , 2006, J. Parallel Distributed Comput..

[45]  Andreas T. Ernst,et al.  ICE: a statistical approach to identifying endmembers in hyperspectral images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[46]  J. Chanussot,et al.  Hyperspectral Remote Sensing Data Analysis and Future Challenges , 2013, IEEE Geoscience and Remote Sensing Magazine.

[47]  Aleksandra Pizurica,et al.  Semisupervised Local Discriminant Analysis for Feature Extraction in Hyperspectral Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[48]  James E. Fowler,et al.  Locality-Preserving Dimensionality Reduction and Classification for Hyperspectral Image Analysis , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Jon Atli Benediktsson,et al.  Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown From Automatically Selected Markers , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[50]  Lorenzo Bruzzone,et al.  A Novel Transductive SVM for Semisupervised Classification of Remote-Sensing Images , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[51]  R. Green,et al.  NASA Mission to Measure Global Plant Physiology and Functional Types , 2008, 2008 IEEE Aerospace Conference.

[52]  Derek Rogge,et al.  Integration of spatial–spectral information for the improved extraction of endmembers , 2007 .

[53]  José M. Bioucas-Dias,et al.  Hyperspectral Unmixing Based on Mixtures of Dirichlet Components , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[54]  Liangpei Zhang,et al.  Dimensionality Reduction Based on Clonal Selection for Hyperspectral Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[55]  James Theiler,et al.  Elliptically Contoured Distributions for Anomalous Change Detection in Hyperspectral Imagery , 2010, IEEE Geoscience and Remote Sensing Letters.

[56]  Weidong Sun,et al.  Automatic analysis of the slight change image for unsupervised change detection , 2015 .

[57]  Hassan Ghassemian,et al.  Kernel Multivariate Spectral–Spatial Analysis of Hyperspectral Data , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[58]  Guangyi Chen,et al.  Enhancing Spatial Resolution of Hyperspectral Imagery Using Sensor's Intrinsic Keystone Distortion , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[59]  Xing Zhao,et al.  Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[60]  Jun Li,et al.  Parallel Implementation of Sparse Representation Classifiers for Hyperspectral Imagery on GPUs , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[61]  Antonio J. Plaza,et al.  Parallel Hyperspectral Image and Signal Processing [Applications Corner] , 2011, IEEE Signal Processing Magazine.

[62]  J. G. Liu,et al.  Smoothing Filter-based Intensity Modulation : a spectral preserve image fusion technique for improving spatial details , 2001 .

[63]  Salah Bourennane,et al.  Noise Removal From Hyperspectral Images by Multidimensional Filtering , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[65]  Naoto Yokoya,et al.  Hyperspectral and Multispectral Data Fusion: A comparative review of the recent literature , 2017, IEEE Geoscience and Remote Sensing Magazine.

[66]  Antonio J. Plaza,et al.  Minimum Volume Simplex Analysis: A Fast Algorithm for Linear Hyperspectral Unmixing , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[67]  Olivier Berné,et al.  Non-negative matrix factorization pansharpening of hyperspectral data: An application to mid-infrared astronomy , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[68]  Bo Du,et al.  A Subspace-Based Change Detection Method for Hyperspectral Images , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[69]  Yihong Gong,et al.  Nonlinear Learning using Local Coordinate Coding , 2009, NIPS.

[70]  Da He,et al.  Nonlocal Total Variation Subpixel Mapping for Hyperspectral Remote Sensing Imagery , 2016, Remote. Sens..

[71]  Jon Atli Benediktsson,et al.  Advances in Spectral-Spatial Classification of Hyperspectral Images , 2013, Proceedings of the IEEE.

[72]  Quan Pan,et al.  Hyperspectral imagery super-resolution by sparse representation and spectral regularization , 2011, EURASIP J. Adv. Signal Process..

[73]  Jocelyn Chanussot,et al.  Morphological Attribute Profiles With Partial Reconstruction , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[74]  Francesca Bovolo,et al.  Sequential Spectral Change Vector Analysis for Iteratively Discovering and Detecting Multiple Changes in Hyperspectral Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[75]  Naoto Yokoya,et al.  Nonlinear Unmixing of Hyperspectral Data Using Semi-Nonnegative Matrix Factorization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[76]  Fabio Del Frate,et al.  Pixel Unmixing in Hyperspectral Data by Means of Neural Networks , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[77]  John P. Kerekes,et al.  Hyperspectral Imaging System Modeling , 2003 .

[78]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[79]  Gabriele Moser,et al.  Combining Support Vector Machines and Markov Random Fields in an Integrated Framework for Contextual Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[80]  Wilfried Philips,et al.  Feature Extraction of Hyperspectral Images With Semisupervised Graph Learning , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[81]  Melba M. Crawford,et al.  Active Learning: Any Value for Classification of Remotely Sensed Data? , 2013, Proceedings of the IEEE.

[82]  Antonio J. Plaza,et al.  A New Genetic Method for Subpixel Mapping Using Hyperspectral Images , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[83]  Jean-Yves Tourneret,et al.  Bayesian fusion of multispectral and hyperspectral images using a block coordinate descent method , 2015, 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[84]  Knut Conradsen,et al.  Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies , 1998 .

[85]  Yicong Zhou,et al.  Dimension Reduction Using Spatial and Spectral Regularized Local Discriminant Embedding for Hyperspectral Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[86]  Lorenzo Bruzzone,et al.  Automatic analysis of the difference image for unsupervised change detection , 2000, IEEE Trans. Geosci. Remote. Sens..

[87]  Michal Irani,et al.  Super-resolution from a single image , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[88]  Nicolas Dobigeon,et al.  Nonlinear Hyperspectral Unmixing With Robust Nonnegative Matrix Factorization , 2014, IEEE Transactions on Image Processing.

[89]  Xiao Xiang Zhu,et al.  A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data , 2016, IEEE Geoscience and Remote Sensing Letters.

[90]  Gilbert L. Peterson,et al.  Removing parallax-induced changes in Hyperspectral Change Detection , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[91]  P. Jarecke,et al.  Overview of the Hyperion Imaging Spectrometer for the NASA EO-1 mission , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[92]  Antonio J. Plaza,et al.  A Hybrid CPU–GPU Real-Time Hyperspectral Unmixing Chain , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[93]  Shiming Xiang,et al.  Semisupervised Pair-Wise Band Selection for Hyperspectral Images , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[94]  Patrick Hostert,et al.  The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation , 2015, Remote. Sens..

[95]  Jie Chen,et al.  Nonlinear Estimation of Material Abundances in Hyperspectral Images With $\ell_{1}$-Norm Spatial Regularization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[96]  Elisabetta Binaghi,et al.  Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data , 2001, IEEE Trans. Geosci. Remote. Sens..

[97]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[98]  J. Chan,et al.  Mapping impervious surfaces from superresolution enhanced CHRIS/Proba imagery using multiple endmember unmixing , 2012 .

[99]  Pedram Ghamisi,et al.  Spectral–Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[100]  Jocelyn Chanussot,et al.  Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability , 2015, WHISPERS.

[101]  Ben Somers,et al.  A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems , 2009 .

[102]  Johannes R. Sveinsson,et al.  Sure based model selection for hyperspectral imaging , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[103]  Yuan Yan Tang,et al.  Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images , 2019, IEEE Transactions on Cybernetics.

[104]  Rob Heylen,et al.  A Multilinear Mixing Model for Nonlinear Spectral Unmixing , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[105]  Qian Du,et al.  High Performance Computing for Hyperspectral Remote Sensing , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[106]  Akira Iwasaki,et al.  Hyperspectral Imager Suite (HISUI) -Japanese hyper-multi spectral radiometer , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[107]  Paul D. Gader,et al.  SPICE: a sparsity promoting iterated constrained endmember extraction algorithm with applications to landmine detection from hyperspectral imagery , 2007, SPIE Defense + Commercial Sensing.

[108]  Russell C. Hardie,et al.  Analysis of hyperspectral change detection as affected by vegetation and illumination variations , 2007, SPIE Defense + Commercial Sensing.

[109]  Johannes R. Sveinsson,et al.  Wavelet-Based Sparse Reduced-Rank Regression for Hyperspectral Image Restoration , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[110]  Jean-Yves Tourneret,et al.  Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery , 2012, IEEE Transactions on Image Processing.

[111]  Qian Du,et al.  Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[112]  B. Hapke Bidirectional reflectance spectroscopy: 1. Theory , 1981 .

[113]  Sicong Liu,et al.  Oil Spill Detection via Multitemporal Optical Remote Sensing Images: A Change Detection Perspective , 2017, IEEE Geoscience and Remote Sensing Letters.

[114]  Liangpei Zhang,et al.  Hyperspectral Image Denoising via Noise-Adjusted Iterative Low-Rank Matrix Approximation , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[115]  Filiberto Pla,et al.  Band Selection in Multispectral Images by Minimization of Dependent Information , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[116]  A. Kai Qin,et al.  Collaborative Active and Semisupervised Learning for Hyperspectral Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[117]  Stefania Matteoli,et al.  The PRISMA hyperspectral mission: Science activities and opportunities for agriculture and land monitoring , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[118]  Johannes R. Sveinsson,et al.  Hyperspectral image restoration using wavelets , 2013, Remote Sensing.

[119]  Antonio J. Plaza,et al.  Clusters Versus FPGA for Parallel Processing of Hyperspectral Imagery , 2008, Int. J. High Perform. Comput. Appl..

[120]  Naoto Yokoya,et al.  Hyperspectral Pansharpening: A Review , 2015, IEEE Geoscience and Remote Sensing Magazine.

[121]  Russell C. Hardie,et al.  Hyperspectral Change Detection in the Presenceof Diurnal and Seasonal Variations , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[122]  Francesca Bovolo,et al.  Hierarchical Unsupervised Change Detection in Multitemporal Hyperspectral Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[123]  Bruno Aiazzi,et al.  Hyper-Sharpening: A First Approach on SIM-GA Data , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[124]  Jon Atli Benediktsson,et al.  A Novel Feature Selection Approach Based on FODPSO and SVM , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[125]  Paul Honeine,et al.  Hyperspectral Unmixing in Presence of Endmember Variability, Nonlinearity, or Mismodeling Effects , 2015, IEEE Transactions on Image Processing.

[126]  E. Baltsavias,et al.  ADVANCES IN HYPERSPECTRAL AND MULTISPECTRAL IMAGE FUSION AND SPECTRAL UNMIXING , 2015 .

[127]  Marco Diani,et al.  Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[128]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[129]  Mikhail F. Kanevski,et al.  A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification , 2011, IEEE Journal of Selected Topics in Signal Processing.

[130]  Lorenzo Bruzzone,et al.  Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[131]  Naoto Yokoya,et al.  Hyperspectral, multispectral, and panchromatic data fusion based on coupled non-negative matrix factorization , 2011, 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[132]  Antonio J. Plaza,et al.  Semi-supervised hyperspectral image segmentation , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[133]  Thomas Blaschke,et al.  Object based image analysis for remote sensing , 2010 .

[134]  Jon Atli Benediktsson,et al.  A Novel Evolutionary Swarm Fuzzy Clustering Approach for Hyperspectral Imagery , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[135]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[136]  Antonio Plaza,et al.  Performance-Power Evaluation of an OpenCL Implementation of the Simplex Growing Algorithm for Hyperspectral Unmixing , 2017, IEEE Geoscience and Remote Sensing Letters.

[137]  Jocelyn Chanussot,et al.  Promoting Partial Reconstruction for The Morphological Analysis of Very High Resolution Urban Remote Sensing Images , 2017 .

[138]  Pol Coppin,et al.  Review ArticleDigital change detection methods in ecosystem monitoring: a review , 2004 .

[139]  Jun Li,et al.  Advanced Spectral Classifiers for Hyperspectral Images: A review , 2017, IEEE Geoscience and Remote Sensing Magazine.

[140]  G. M. Foody,et al.  Relating the land-cover composition of mixed pixels to artificial neural network classification outpout , 1996 .

[141]  Antonio J. Plaza,et al.  On the use of small training sets for neural network-based characterization of mixed pixels in remotely sensed hyperspectral images , 2009, Pattern Recognit..

[142]  Nazeeh Aranki,et al.  Airborne demonstration of FPGA implementation of Fast Lossless hyperspectral data compression system , 2014, 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).

[143]  Yansheng Li,et al.  Unsupervised Spectral–Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification , 2015, IEEE Geoscience and Remote Sensing Letters.

[144]  Peijun Du,et al.  Hyperspectral Remote Sensing Image Classification Based on Rotation Forest , 2014, IEEE Geoscience and Remote Sensing Letters.

[145]  Johannes R. Sveinsson,et al.  Hyperspectral image denoising using 3D wavelets , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[146]  Caroline Fossati,et al.  Reduction of Signal-Dependent Noise From Hyperspectral Images for Target Detection , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[147]  Chein-I. Chang Hyperspectral Imaging: Techniques for Spectral Detection and Classification , 2003 .

[148]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[149]  Liangpei Zhang,et al.  Hyperspectral Image Restoration Using Low-Rank Matrix Recovery , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[150]  Francesca Bovolo,et al.  A Novel Framework for the Design of Change-Detection Systems for Very-High-Resolution Remote Sensing Images , 2013, Proceedings of the IEEE.

[151]  Antonio J. Plaza,et al.  Informative Change Detection by Unmixing for Hyperspectral Images , 2015, IEEE Geoscience and Remote Sensing Letters.

[152]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[153]  Qiong Jackson,et al.  Adaptive Bayesian contextual classification based on Markov random fields , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[154]  Chein-I Chang,et al.  An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery , 2000, IEEE Trans. Geosci. Remote. Sens..

[155]  Xavier Otazu,et al.  Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[156]  Naoto Yokoya,et al.  Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[157]  Luis Alonso,et al.  Correction of systematic spatial noise in push-broom hyperspectral sensors: application to CHRIS/PROBA images. , 2008, Applied optics.

[158]  Zongben Xu,et al.  Spatial and Spectral Image Fusion Using Sparse Matrix Factorization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[159]  Antonio J. Plaza,et al.  Unmixing-based content retrieval system for remotely sensed hyperspectral imagery on GPUs , 2014, The Journal of Supercomputing.

[160]  Jocelyn Chanussot,et al.  Hyperspectral Super-Resolution of Locally Low Rank Images From Complementary Multisource Data , 2014, IEEE Transactions on Image Processing.

[161]  Antonio J. Plaza,et al.  Spatial/spectral endmember extraction by multidimensional morphological operations , 2002, IEEE Trans. Geosci. Remote. Sens..

[162]  Chiman Kwan,et al.  A Novel Cluster Kernel RX Algorithm for Anomaly and Change Detection Using Hyperspectral Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[163]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[164]  Jon Atli Benediktsson,et al.  A Novel Technique for Optimal Feature Selection in Attribute Profiles Based on Genetic Algorithms , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[165]  Aleksandra Pizurica,et al.  Fusion of Spectral and Spatial Information for Classification of Hyperspectral Remote-Sensed Imagery by Local Graph , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[166]  Berrin A. Yanikoglu,et al.  Deep Learning With Attribute Profiles for Hyperspectral Image Classification , 2016, IEEE Geoscience and Remote Sensing Letters.

[167]  Stephen Marshall,et al.  Effective Feature Extraction and Data Reduction in Remote Sensing Using Hyperspectral Imaging [Applications Corner] , 2014, IEEE Signal Processing Magazine.

[168]  Bin Luo,et al.  Empirical Automatic Estimation of the Number of Endmembers in Hyperspectral Images , 2013, IEEE Geoscience and Remote Sensing Letters.

[169]  Jiamin Liu,et al.  Semisupervised Sparse Manifold Discriminative Analysis for Feature Extraction of Hyperspectral Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[170]  Lorenzo Bruzzone,et al.  Semisupervised Transfer Component Analysis for Domain Adaptation in Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[171]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[172]  Peijun Du,et al.  Sub-pixel change detection for urban land-cover analysis via multi-temporal remote sensing images , 2014, Geo spatial Inf. Sci..

[173]  Liangpei Zhang,et al.  Weighted Sparse Graph Based Dimensionality Reduction for Hyperspectral Images , 2016, IEEE Geoscience and Remote Sensing Letters.

[174]  Yuan Xie,et al.  Hyperspectral Image Restoration via Iteratively Regularized Weighted Schatten $p$-Norm Minimization , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[175]  Jon Atli Benediktsson,et al.  Integration of Segmentation Techniques for Classification of Hyperspectral Images , 2014, IEEE Geoscience and Remote Sensing Letters.

[176]  Antonio J. Plaza,et al.  Parallel unmixing of remotely sensed hyperspectral images on commodity graphics processing units , 2011, Concurr. Comput. Pract. Exp..

[177]  Shinichi Nakajima,et al.  Semi-Supervised Local Fisher Discriminant Analysis for Dimensionality Reduction , 2008, PAKDD.

[178]  Jon Atli Benediktsson,et al.  Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[179]  Marco Diani,et al.  Subspace-Based Striping Noise Reduction in Hyperspectral Images , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[180]  Wataru Takeuchi,et al.  Stripe Noise Reduction in MODIS Data by Combining Histogram Matching With Facet Filter , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[181]  Konrad Schindler,et al.  Hyperspectral Super-Resolution by Coupled Spectral Unmixing , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[182]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[183]  Antonio J. Plaza,et al.  Real-Time Implementation of the Pixel Purity Index Algorithm for Endmember Identification on GPUs , 2014, IEEE Geoscience and Remote Sensing Letters.

[184]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[185]  Naoto Yokoya,et al.  Potential of Resolution-Enhanced Hyperspectral Data for Mineral Mapping Using Simulated EnMAP and Sentinel-2 Images , 2016, Remote. Sens..

[186]  Trac D. Tran,et al.  Abundance Estimation for Bilinear Mixture Models via Joint Sparse and Low-Rank Representation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[187]  Johannes R. Sveinsson,et al.  Hyperspectral image denoising using a new linear model and Sparse Regularization , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.

[188]  Shuicheng Yan,et al.  Neighborhood preserving embedding , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[189]  Salah Bourennane,et al.  Denoising and Dimensionality Reduction Using Multilinear Tools for Hyperspectral Images , 2008, IEEE Geoscience and Remote Sensing Letters.

[190]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[191]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[192]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[193]  Ben Somers,et al.  Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests , 2013 .

[194]  Alfred O. Hero,et al.  Nonlinear Unmixing of Hyperspectral Images: Models and Algorithms , 2013, IEEE Signal Processing Magazine.

[195]  Imed Riadh Farah,et al.  Multi-Spectro-Temporal Analysis of Hyperspectral Imagery Based on 3-D Spectral Modeling and Multilinear Algebra , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[196]  Pingxiang Li,et al.  Nonlinear estimation of subpixel proportion via kernel least square regression , 2007 .

[197]  Jon Atli Benediktsson,et al.  Multiple Morphological Profiles From Multicomponent-Base Images for Hyperspectral Image Classification , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[198]  Antonio J. Plaza,et al.  Parallel Implementation of Spatial–Spectral Endmember Extraction on Graphic Processing Units , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[199]  Sebastián López,et al.  FPGA Implementation of the HySime Algorithm for the Determination of the Number of Endmembers in Hyperspectral Data , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[200]  Qi Wang,et al.  Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[201]  Peter M. Atkinson,et al.  Mapping sub-pixel vector boundaries from remotely sensed images , 1996 .

[202]  Jonathan Cheung-Wai Chan,et al.  Hyperspectral Imagery Super-Resolution by Spatial–Spectral Joint Nonlocal Similarity , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[203]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[204]  Silong Peng,et al.  Hyperspectral Imagery Denoising Using a Spatial-Spectral Domain Mixing Prior , 2012, Journal of Computer Science and Technology.

[205]  Jianglin Ma,et al.  A comparison of superresolution reconstruction methods for multi-angle CHRIS/Proba images , 2008, Remote Sensing.

[206]  Douglas L. Jones,et al.  Wavelet-based hyperspectral image estimation , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[207]  Jorge E. Pezoa,et al.  Multidimensional Striping Noise Compensation in Hyperspectral Imaging: Exploiting Hypercubes’ Spatial, Spectral, and Temporal Redundancy , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[208]  Liangpei Zhang,et al.  An Adaptive Subpixel Mapping Method Based on MAP Model and Class Determination Strategy for Hyperspectral Remote Sensing Imagery , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[209]  Antonio J. Plaza,et al.  Sparse Unmixing of Hyperspectral Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[210]  Jacek M. Zurada,et al.  Normalized Mutual Information Feature Selection , 2009, IEEE Transactions on Neural Networks.

[211]  Jocelyn Chanussot,et al.  A Convex Formulation for Hyperspectral Image Superresolution via Subspace-Based Regularization , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[212]  Hongyan Zhang HYPERSPECTRAL IMAGE DENOISING WITH CUBIC TOTAL VARIATION MODEL , 2012 .

[213]  Guillermo Sapiro,et al.  Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[214]  Bor-Chen Kuo,et al.  Feature Mining for Hyperspectral Image Classification , 2013, Proceedings of the IEEE.

[215]  John P. Kerekes,et al.  Algorithm taxonomy for hyperspectral unmixing , 2000, SPIE Defense + Commercial Sensing.

[216]  Xiuping Jia,et al.  Integration of Soft and Hard Classifications Using Extended Support Vector Machines , 2009, IEEE Geoscience and Remote Sensing Letters.

[217]  Qian Du,et al.  Hyperspectral Image Classification Using Deep Pixel-Pair Features , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[218]  Timothy A. Warner,et al.  Kernel-based extreme learning machine for remote-sensing image classification , 2013 .

[219]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[220]  M. Pal,et al.  Random forests for land cover classification , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[221]  Vivek K. Goyal,et al.  Denoising Hyperspectral Imagery and Recovering Junk Bands using Wavelets and Sparse Approximation , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[222]  Jon Atli Benediktsson,et al.  Multiple Feature Learning for Hyperspectral Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[223]  Ajmal S. Mian,et al.  Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution , 2014, ECCV.

[224]  Maurice Borgeaud,et al.  Kernel Low-Rank and Sparse Graph for Unsupervised and Semi-Supervised Classification of Hyperspectral Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[225]  J. Benediktsson,et al.  Remotely Sensed Image Classification Using Sparse Representations of Morphological Attribute Profiles , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[226]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[227]  Guangyi Chen,et al.  Dimensionality reduction of hyperspectral imagery using improved locally linear embedding , 2007 .

[228]  C. A. Murthy,et al.  Unsupervised Feature Selection Using Feature Similarity , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[229]  Antonio J. Plaza,et al.  Fast Spatial Preprocessing for Spectral Unmixing of Hyperspectral Data on Graphics Processing Units , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[230]  Jean-Yves Tourneret,et al.  Hyperspectral Unmixing With Spectral Variability Using a Perturbed Linear Mixing Model , 2015, IEEE Transactions on Signal Processing.

[231]  Antonio J. Plaza,et al.  A New Minimum-Volume Enclosing Algorithm for Endmember Identification and Abundance Estimation in Hyperspectral Data , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[232]  Antonio J. Plaza,et al.  Joint linear/nonlinear spectral unmixing of hyperspectral image data , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[233]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[234]  Jon Atli Benediktsson,et al.  Generalized Composite Kernel Framework for Hyperspectral Image Classification , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[235]  Antonio J. Plaza,et al.  Sparse Unmixing-Based Change Detection for Multitemporal Hyperspectral Images , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[236]  R. Lucas,et al.  Non-linear mixture modelling without end-members using an artificial neural network , 1997 .

[237]  G. Foody Monitoring the magnitude of land-cover change around the southern limits of the Sahara , 2001 .

[238]  Antonio J. Plaza,et al.  Nonlinear Hyperspectral Unmixing Using Nonlinearity Order Estimation and Polytope Decomposition , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[239]  Johannes R. Sveinsson,et al.  Wavelet based hyperspectral image restoration using spatial and spectral penalties , 2013, Remote Sensing.

[240]  Jun Li,et al.  Simultaneous Sparse Graph Embedding for Hyperspectral Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[241]  Antonio J. Plaza,et al.  GPU Implementation of an Automatic Target Detection and Classification Algorithm for Hyperspectral Image Analysis , 2013, IEEE Geoscience and Remote Sensing Letters.

[242]  Antonio J. Plaza,et al.  The Promise of Reconfigurable Computing for Hyperspectral Imaging Onboard Systems: A Review and Trends , 2013, Proceedings of the IEEE.

[243]  Jon Atli Benediktsson,et al.  An efficient method for segmentation of images based on fractional calculus and natural selection , 2012, Expert Syst. Appl..

[244]  William J. Dally,et al.  The GPU Computing Era , 2010, IEEE Micro.

[245]  Edoardo Pasolli,et al.  An Active Learning Framework for Hyperspectral Image Classification Using Hierarchical Segmentation , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[246]  Russell C. Hardie,et al.  Hyperspectral resolution enhancement using high-resolution multispectral imagery with arbitrary response functions , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[247]  Antonio J. Plaza,et al.  Use of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing , 2013, Integr..

[248]  W. J. Carper,et al.  The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data , 1990 .

[249]  Bruno Aiazzi,et al.  Improving Component Substitution Pansharpening Through Multivariate Regression of MS $+$Pan Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[250]  Xiaoqiang Lu,et al.  Semi-supervised change detection method for multi-temporal hyperspectral images , 2015, Neurocomputing.

[251]  Mehran Yazdi,et al.  Noise Reduction of Hyperspectral Images Using Kernel Non-Negative Tucker Decomposition , 2011, IEEE Journal of Selected Topics in Signal Processing.

[252]  Francesca Bovolo,et al.  Change Detection in Multitemporal Hyperspectral Images , 2016 .

[253]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[254]  Johannes R. Sveinsson,et al.  Hyperspectral Image Denoising Using First Order Spectral Roughness Penalty in Wavelet Domain , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[255]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[256]  Antonio Plaza,et al.  Parallel heterogeneous CBIR system for efficient hyperspectral image retrieval using spectral mixture analysis , 2010 .

[257]  Bor-Chen Kuo,et al.  Kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[258]  Naoto Yokoya,et al.  Hyperspectral Image Classification With Canonical Correlation Forests , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[259]  Jean-Yves Tourneret,et al.  Fast Fusion of Multi-Band Images Based on Solving a Sylvester Equation , 2015, IEEE Transactions on Image Processing.

[260]  Paul D. Gader,et al.  A Review of Nonlinear Hyperspectral Unmixing Methods , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[261]  Behnood Rasti,et al.  Sparse Hyperspectral Image Modeling and Restoration , 2014 .

[262]  Chunhong Pan,et al.  Automatic Spatial–Spectral Feature Selection for Hyperspectral Image via Discriminative Sparse Multimodal Learning , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[263]  Jean-Yves Tourneret,et al.  Nonlinear unmixing of hyperspectral images using a generalized bilinear model , 2011 .

[264]  Turgay Çelik,et al.  Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and $k$-Means Clustering , 2009, IEEE Geoscience and Remote Sensing Letters.

[265]  Gustavo Camps-Valls,et al.  Semisupervised Manifold Alignment of Multimodal Remote Sensing Images , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[266]  Francesca Bovolo,et al.  A Framework for Automatic and Unsupervised Detection of Multiple Changes in Multitemporal Images , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[267]  Tarek A. El-Ghazawi,et al.  Optimization of Selected Remote Sensing Algorithms for Many-Core Architectures , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[268]  Johannes R. Sveinsson,et al.  Automatic Spectral–Spatial Classification Framework Based on Attribute Profiles and Supervised Feature Extraction , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[269]  Yukio Kosugi,et al.  Semi-Supervised Hyperspectral Subspace Learning Based on a Generalized Eigenvalue Problem for Regression and Dimensionality Reduction , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[270]  P. Groves,et al.  Methodology For Hyperspectral Band Selection , 2004 .

[271]  Yücel Altunbasak,et al.  Super-resolution reconstruction of hyperspectral images , 2005 .

[272]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[273]  Jon Atli Benediktsson,et al.  Automatic Framework for Spectral–Spatial Classification Based on Supervised Feature Extraction and Morphological Attribute Profiles , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[274]  Claas Grohnfeldt Multi-sensor Data Fusion for Multi- and Hyperspectral Resolution Enhancement Based on Sparse Representations , 2017 .

[275]  Caroline Fossati,et al.  Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[276]  Johannes R. Sveinsson,et al.  Hyperspectral Feature Extraction Using Total Variation Component Analysis , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[277]  Onkar Dikshit,et al.  SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL REMOTE SENSING IMAGES USING VARIATIONAL AUTOENCODER AND CONVOLUTION NEURAL NETWORK , 2018, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.

[278]  Shen-En Qian,et al.  Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[279]  Wai Keung Wong,et al.  Sparse Alignment for Robust Tensor Learning , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[280]  P. Reinartz,et al.  HYPERSPECTRAL IMAGE RESOLUTION ENHANCEMENT BASED ON SPECTRAL UNMIXING AND INFORMATION FUSION , 2012 .

[281]  Martin Brown,et al.  Linear spectral mixture models and support vector machines for remote sensing , 2000, IEEE Trans. Geosci. Remote. Sens..

[282]  Frank D. Wood,et al.  Canonical Correlation Forests , 2015, ArXiv.

[283]  Francesca Bovolo,et al.  Unsupervised Multitemporal Spectral Unmixing for Detecting Multiple Changes in Hyperspectral Images , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[284]  Seyyed Ali Ahmadi,et al.  Semisupervised graph-based hyperspectral images classification using low-rank representation graph with considering the local structure of data , 2018, J. Electronic Imaging.

[285]  Xi Chen,et al.  Hyperspectral data clustering based on density analysis ensemble , 2017 .

[286]  Peijun Du,et al.  Spectral–Spatial Classification for Hyperspectral Data Using Rotation Forests With Local Feature Extraction and Markov Random Fields , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[287]  Roberto Episcopo,et al.  Destriping MODIS Data Using Overlapping Field-of-View Method , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[288]  Antonio J. Plaza,et al.  Region-Based Spatial Preprocessing for Endmember Extraction and Spectral Unmixing , 2011, IEEE Geoscience and Remote Sensing Letters.

[289]  Licheng Jiao,et al.  Supervised Band Selection Using Local Spatial Information for Hyperspectral Image , 2016, IEEE Geoscience and Remote Sensing Letters.

[290]  Qian Du,et al.  Band selection for change detection from hyperspectral images , 2017, Defense + Security.

[291]  Luciano Alparone,et al.  MTF-tailored Multiscale Fusion of High-resolution MS and Pan Imagery , 2006 .

[292]  Francesca Bovolo,et al.  Unsupervised hierarchical spectral analysis for change detection in hyperspectral images , 2012, 2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS).

[293]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[294]  Yulong Wang,et al.  Graph-Regularized Low-Rank Representation for Destriping of Hyperspectral Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[295]  Antonio J. Plaza,et al.  Parallel Hyperspectral Unmixing on GPUs , 2014, IEEE Geoscience and Remote Sensing Letters.

[296]  Antonio J. Plaza,et al.  Spatial-Spectral Preprocessing Prior to Endmember Identification and Unmixing of Remotely Sensed Hyperspectral Data , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[297]  Xiaohui Zhang,et al.  Independent component analysis for remote sensing study , 1999, Remote Sensing.

[298]  Jon Atli Benediktsson,et al.  Hyperspectral Data Classification Using Extended Extinction Profiles , 2016, IEEE Geoscience and Remote Sensing Letters.

[299]  Lorenzo Bruzzone,et al.  A Novel Approach to the Selection of Spatially Invariant Features for the Classification of Hyperspectral Images With Improved Generalization Capability , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[300]  David Malah,et al.  Rank Estimation and Redundancy Reduction of High-Dimensional Noisy Signals With Preservation of Rare Vectors , 2007, IEEE Transactions on Signal Processing.

[301]  Bin Wang,et al.  Fusion of Hyperspectral and Multispectral Images: A Novel Framework Based on Generalization of Pan-Sharpening Methods , 2014, IEEE Geoscience and Remote Sensing Letters.

[302]  Antonio J. Plaza,et al.  Spatial Preprocessing for Endmember Extraction , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[303]  Bor-Chen Kuo,et al.  A Modified Nonparametric Weight Feature Extraction Using Spatial and Spectral Information , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[304]  Richard Bamler,et al.  A Sparse Image Fusion Algorithm With Application to Pan-Sharpening , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[305]  Jie Chen,et al.  Nonlinear Unmixing of Hyperspectral Data Based on a Linear-Mixture/Nonlinear-Fluctuation Model , 2013, IEEE Transactions on Signal Processing.

[306]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[307]  Jean-Yves Tourneret,et al.  Nonlinear Spectral Unmixing of Hyperspectral Images Using Gaussian Processes , 2012, IEEE Transactions on Signal Processing.

[308]  Antonio J. Plaza,et al.  Collaborative Sparse Regression for Hyperspectral Unmixing , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[309]  Jianglin Ma,et al.  Superresolution Enhancement of Hyperspectral CHRIS/Proba Images With a Thin-Plate Spline Nonrigid Transform Model , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[310]  Bor-Chen Kuo,et al.  Nonparametric weighted feature extraction for classification , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[311]  Antonio J. Plaza,et al.  Recent Developments in High Performance Computing for Remote Sensing: A Review , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[312]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[313]  Yasuyuki Matsushita,et al.  High-resolution hyperspectral imaging via matrix factorization , 2011, CVPR 2011.

[314]  David Krutz,et al.  DESIS (DLR Earth Sensing Imaging Spectrometer for the ISS-MUSES platform) , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[315]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[316]  Jon Atli Benediktsson,et al.  Extinction Profiles for the Classification of Remote Sensing Data , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[317]  Guangyi Chen,et al.  Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[318]  Liangpei Zhang,et al.  Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image Restoration , 2016, IEEE Transactions on Geoscience and Remote Sensing.