Physics of thin films

1. Introduction.- 2. Methods of Preparation of Thin Films.- 2.1 Chemical and Electrochemical Methods.- 2.2 Cathode Sputtering.- 2.2.1 Principle of Diode Sputtering.- 2.2.2 Some Special Systems of Cathode Sputtering.- 2.2.3 Low-Pressure Methods of Cathode Sputtering.- 2.3 Vacuum Evaporation.- 2.3.1 Physical Foundations.- 2.3.2 Experimental Techniques.- 2.3.21 Evaporation Apparatus.- 2.3.22 Substrates and Their Preparation.- 2.3.23 The Most Important Materials for Evaporation.- 2.3.24 Evaporation Sources.- 2.3.25 Special Evaporation Techniques.- 2.3.26 Masking Techniques.- 3. Thin Film Thickness and Deposition Rate Measurement Methods.- 3.1 Balance Methods.- 3.1.1 Microbalance Method.- 3.1.2 Vibrating Quartz Method.- 3.2 Electrical Methods.- 3.2.1 Electric Resistivity Measurement.- 3.2.2 Measurement of Capacitance.- 3.2.3 Measurement of Q-factor Change.- 3.2.4 Ionization Methods.- 3.3 Optical Methods.- 3.3.1 Method Based on Measurements of Light Absorption Coefficient.- 3.3.2 Interference Methods.- 3.3.3 Polarimetric (Ellipsometric) Method.- 3.4 Deposition Rate Monitoring Using Transfer of Momentum.- 3.5 Special Thickness Monitoring Methods.- 3.5.1 Stylus Method.- 3.5.2 Radiation-absorption and Radiation-emission Methods.- 3.5.3 Work-function Change Method.- 4. Mechanism of Film Formation.- 4.1 Formation Stages of Thin Films.- 4.2 Nucleation.- 4.2.1 Capillarity Theory of Nucleation.- 4.2.2 Statistical (Atomistic) Theory of Nucleation.- 4.2.3 Influence of Individual Factors on Nucleation Process.- 4.2.4 Some Experiments for Verification of Nucleation Theories.- 4.3 Growth and Coalescence of Islands.- 4.4 Influence of Various Factors on Final Structure of Film.- 4.4.1 Special Properties of Films Deposited by Cathode Sputtering.- 4.5 Crystallographic Structure of Thin Films.- 4.6 Epitaxial Films.- 5. Composition, Morphology and Structure of Thin Films.- 5.1 Methods for Determination of Chemical Composition of Films.- 5.2 Electron Microscopy of Thin Films.- 5.2.1 Transmission Electron Microscopy.- 5.2.2 Electron-microscopic Examination of Surface by Replica Method.- 5.2.3 Special Types of Electron Microscopes for Direct Image-forming of Film Surface.- 5.2.31 Scanning Microscope.- 5.2.32 Reflection Microscope.- 5.2.33 Emission Microscopes.- 5.2.4 Tunnel Emission and Field Ionization.- 5.2.41 Field Electron Microscope.- 5.2.42 Field Ion Microscope.- 5.3 Diffraction of Electrons.- 5.3.1 Diffraction of High-Energy Electrons in Transmission and in Reflection.- 5.3.2 Low-Energy Electron Diffraction (LEED).- 5.4 X-ray Methods.- 5.4.1 X-ray Diffraction.- 5.4.2 X-ray Microscopy.- 5.5 Auger Spectroscopy.- 6. Properties of Thin Films.- 6.1 Mechanical Properties.- 6.1.1 Experimental Methods for Measurement of Mechanical Properties of Thin Films.- 6.1.2 Stress in Thin Films.- 6.1.3 Mechanical Constants of Thin Films.- 6.1.4 Adhesion of Thin Films.- 6.1.5 Rayleigh Surface Waves.- 6.2 Electrical and Magnetic Properties of Thin Films.- 6.2.1 Conductivity of Continuous Metal Films.- 6.2.2 Conductivity of Discontinuous Metal Films.- 6.2.3 Electrical Properties of Semiconducting Thin Films.- 6.2.4 Galvanomagnetic Effects in Thin Films.- 6.2.5 Superconductivity in Thin Films.- 6.2.6 Conductivity of Thin Dielectric Films.- 6.2.7 Dielectric Properties of Thin Films.- 6.2.8 Ferromagnetic Properties of Thin Films.- 6.3 Optical Properties of Thin Films.- 7. Application of This Films.- 7.1 Optical Applications.- 7.2 Applications in Electronics.- 7.2.1 Electric Contacts, Connections and Resistors.- 7.2.2 Capacitors and Inductances.- 7.2.3 Applications of Ferromagnetic and Superconducting Films.- 7.2.4 Active Electronic Elements.- 7.2.5 Microacoustic Elements Using Surface Waves.- 7.2.6 Integrated Circuits (IC).- 7.2.7 Thin Films in Optoelectronics and Integrated Optics.- 7.2.8 Further Applications.- References.