Amidinate Supporting Ligands Influence Molecularity in Formation of Uranium Nitrides.

Uranium nitride complexes are attractive targets for chemists as molecular models for the bonding, reactivity, and magnetic properties of next-generation nuclear fuels, but these molecules are uncommon and can be difficult to isolate due to their high reactivity. Here, we describe the synthesis of three new multinuclear uranium nitride complexes, [U(BCMA)2]2(μ-N)(μ-κ1:κ1-BCMA) (7), [(U(BIMA)2)2(μ-N)(μ-NiPr)(K2(μ-η3:η3-CH2CHNiPr)]2 (8), and [U(BIMA)2]2(μ-N)(μ-κ1:κ1-BIMA) (9) (BCMA = N,N-bis(cyclohexyl)methylamidinate, BIMA = N,N-bis(iso-propyl)methylamidinate), from U(III) and U(IV) amidinate precursors. By varying the amidinate ligand substituents and azide source, we were able to influence the composition and size of these nitride complexes. 15N isotopic labeling experiments confirmed the bridging nitride moieties in 7-9 were formed via two-electron reduction of azide. The tetra-uranium cluster 8 was isolated in 99% yield via reductive cleavage of the amidinate ligands; this unusual molecule contains nitrogen-based ligands with formal 1-, 2-, and 3- charges. Additionally, chemical oxidation of the U(IV) precursor U(N3)(BCMA)3 yielded the cationic U(V) species [U(N3)(BCMA)3][OTf]. Magnetic susceptibility measurements confirmed a U(IV) oxidation state for the uranium centers in the three nitride-bridged complexes and provided a comparison of magnetic behavior in the structurally related U(III)-U(IV)-U(V) series U(BCMA)3, U(N3)(BCMA)3, and [U(N3)(BCMA)3][OTf]. At 240 K, the magnetic moments in this series decreased with increasing oxidation state, i.e., U(III) > U(IV) > U(V); this trend follows the decreasing number of 5f valence electrons along this series.

[1]  P. Roesky,et al.  Series of Tetravalent Actinide Amidinates: Structure Determination and Bonding Analysis. , 2020, Inorganic chemistry.

[2]  P. Roesky,et al.  Enantiomerically Pure Tetravalent Neptunium Amidinates: Synthesis and Characterization , 2020, Chemistry.

[3]  R. Scopelliti,et al.  C-H Bond Activation by an Isolated Dinuclear U(III)/U(IV) Nitride. , 2020, Journal of the American Chemical Society.

[4]  S. Mathur,et al.  Chemical Vapor Deposition of Phase-Pure Uranium Dioxide Thin Films from Uranium(IV) Amidate Precursors. , 2019, Angewandte Chemie.

[5]  M. Cattelan,et al.  Epitaxial UN and α-U2N3 thin films , 2018, Thin Solid Films.

[6]  Yongbin Zhang,et al.  Nitride layers on uranium surfaces , 2018, Progress in Surface Science.

[7]  M. Baik,et al.  C-H Bond Addition across a Transient Uranium-Nitrido Moiety and Formation of a Parent Uranium Imido Complex. , 2018, Journal of the American Chemical Society.

[8]  J. Arnold,et al.  Multiple Bonding in Actinide Chemistry , 2018, Encyclopedia of Inorganic and Bioinorganic Chemistry.

[9]  M. Nyman,et al.  Solution and Solid State Structural Chemistry of Th(IV) and U(IV) 4-Hydroxybenzoates. , 2018, Inorganic chemistry.

[10]  M. Mazzanti,et al.  Reversible Dihydrogen Activation and Hydride Transfer by a Uranium Nitride Complex. , 2018, Angewandte Chemie.

[11]  R. Scopelliti,et al.  Nitrogen reduction and functionalization by a multimetallic uranium nitride complex , 2017, Nature.

[12]  Nicholas S. Settineri,et al.  A Thorium Chalcogenolate Series Generated by Atom Insertion into Thorium-Carbon Bonds. , 2017, Journal of the American Chemical Society.

[13]  F. Tuna,et al.  Molecular and electronic structure of terminal and alkali metal-capped uranium(V) nitride complexes , 2016, Nature Communications.

[14]  R. Scopelliti,et al.  Facile CO Cleavage by a Multimetallic CsU2 Nitride Complex. , 2016, Angewandte Chemie.

[15]  M. Mazzanti,et al.  Nucleophilic Reactivity of a Nitride-Bridged Diuranium(IV) Complex: CO2 and CS2 Functionalization. , 2016, Angewandte Chemie.

[16]  S. Odoh,et al.  Investigation of the electronic ground states for a reduced pyridine(diimine) uranium series: evidence for a ligand tetraanion stabilized by a uranium dimer. , 2015, Journal of the American Chemical Society.

[17]  N. Fridman,et al.  Actinide Amidinate Complexes with a Dimethylamine Side Arm: Synthesis, Structural Characterization, and Reactivity , 2015 .

[18]  P. Arnold,et al.  C-H bond activation by f-block complexes. , 2015, Angewandte Chemie.

[19]  P. Fanwick,et al.  Harnessing redox activity for the formation of uranium tris(imido) compounds. , 2014, Nature chemistry.

[20]  W. Evans,et al.  Magnetic susceptibility of uranium complexes. , 2014, Chemical reviews.

[21]  A. J. Blake,et al.  Two-Electron Reductive Carbonylation of Terminal Uranium(V) and Uranium(VI) Nitrides to Cyanate by Carbon Monoxide** , 2014, Angewandte Chemie.

[22]  S. Liddle,et al.  Progress in molecular uranium-nitride chemistry , 2014 .

[23]  A. Devi ‘Old Chemistries’ for new applications: Perspectives for development of precursors for MOCVD and ALD applications , 2013 .

[24]  J. Peters,et al.  Catalytic conversion of nitrogen to ammonia by a molecular Fe model complex , 2013, Nature.

[25]  P. Carroll,et al.  Tetrakis(bis(trimethylsilyl)amido)uranium(IV): synthesis and reactivity. , 2013, Inorganic chemistry.

[26]  Trevor W. Hayton,et al.  Recent developments in actinide-ligand multiple bonding. , 2013, Chemical communications.

[27]  Steven J. Zinkle,et al.  Materials Challenges in Nuclear Energy , 2013 .

[28]  Cristian G. Hrib,et al.  Homoleptic gadolinium amidinates as precursors for MOCVD of oriented gadolinium nitride (GdN) thin films. , 2013, Inorganic chemistry.

[29]  F. Edelmann Lanthanide amidinates and guanidinates in catalysis and materials science: a continuing success story. , 2012, Chemical Society reviews.

[30]  A. J. Blake,et al.  Synthesis and Structure of a Terminal Uranium Nitride Complex , 2012, Science.

[31]  J. M. Kikkawa,et al.  A comparison of the effects of symmetry and magnetoanisotropy on paramagnetic relaxation in related dysprosium single ion magnets. , 2012, Chemical communications.

[32]  A. Ney,et al.  Evaluation of Homoleptic Guanidinate and Amidinate Complexes of Gadolinium and Dysprosium for MOCVD of Rare-Earth Nitride Thin Films , 2011 .

[33]  J. Ziller,et al.  Importance of energy level matching for bonding in Th(3+)-Am(3+) actinide metallocene amidinates, (C(5)Me(5))(2)[(i)PrNC(Me)N(i)Pr]An. , 2010, Inorganic chemistry.

[34]  B. Scott,et al.  Uranium azide photolysis results in C-H bond activation and provides evidence for a terminal uranium nitride. , 2010, Nature chemistry.

[35]  Guang Wu,et al.  Synthesis of a nitrido-substituted analogue of the uranyl ion, [N=U=O]+. , 2010, Journal of the American Chemical Society.

[36]  J. Ziller,et al.  Reaction chemistry of the U(3+) metallocene amidinate (C(5)Me(5))(2)[(i)PrNC(Me)N(i)Pr]U including the isolation of a uranium complex of a monodentate acetate. , 2010, Inorganic chemistry.

[37]  J. Ziller,et al.  Reactivity of Methyl Groups in Actinide Metallocene Amidinate and Triazenido Complexes with Silver and Copper Salts , 2010 .

[38]  J. Ziller,et al.  Insertion of Carbodiimides and Organic Azides into Actinide−Carbon Bonds , 2009 .

[39]  C. Cummins,et al.  Uranium-nitrogen multiple bonding: the case of a four-coordinate uranium(VI) nitridoborate complex. , 2009, Journal of the American Chemical Society.

[40]  J. Pécaut,et al.  A nitrido-centered uranium azido cluster obtained from a uranium azide. , 2008, Angewandte Chemie.

[41]  Ashin Marin Thomas,et al.  Growth Confined by the Nitrogen Source: Synthesis of Pure Metal Nitride Nanoparticles in Mesoporous Graphitic Carbon Nitride , 2007 .

[42]  S. Cotton Lanthanide and Actinide Chemistry: Cotton/Lanthanide and Actinide Chemistry , 2006 .

[43]  J. Ziller,et al.  Molecular Octa-Uranium Rings with Alternating Nitride and Azide Bridges , 2005, Science.

[44]  M. Ephritikhine,et al.  A Comparison of Analogous 4f- and 5f-Element Compounds: Syntheses, X-ray Crystal Structures and Catalytic Activity of the Homoleptic Amidinate Complexes [M{MeC(NCy)2}3] (M = La, Nd or U) , 2004 .

[45]  K. Meyer,et al.  Uranium tris-aryloxide derivatives supported by triazacyclononane: engendering a reactive uranium(III) center with a single pocket for reactivity. , 2003, Journal of the American Chemical Society.

[46]  J. Arnold,et al.  Zirconium Chemistry Involving Benzamidinate Ligands. Reduction of [PhC(NSiMe3)2]2ZrCl2 to form an Imido-Iminoacyl Compound by Carbon-Nitrogen Bond Cleavage , 1994 .

[47]  R. L. Petty,et al.  Fabrication and testing of uranium nitride fuel for space power reactors , 1988 .