The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels

Abstract. We studied sediments from the ca. 1400 million-year-old Xiamaling Formation from the North China block. The upper unit of this formation (unit 1) deposited mostly below storm wave base and contains alternating black and green-gray shales with very distinct geochemical characteristics. The black shales are enriched in redox-sensitive trace metals, have high concentrations of total organic carbon (TOC), high hydrogen index (HI) and iron speciation indicating deposition under anoxic conditions. In contrast, the green-gray shales show no trace metal enrichments, have low TOC, low HI and iron speciation consistent with an oxygenated depositional setting. Altogether, unit 1 displays alternations between oxic and anoxic depositional environments, driving differences in carbon preservation consistent with observations from the modern ocean. We combined our TOC and HI results to calculate the differences in carbon mineralization and carbon preservation by comparing the oxygenated and anoxic depositional environments. Through comparisons of these results with modern sedimentary environments, and by use of a simple diagenetic model, we conclude that the enhanced carbon mineralization under oxygenated conditions in unit 1 of the Xiamaling Formation required a minimum of 4 to 8 % of present-day atmospheric levels (PAL) of oxygen. These oxygen levels are higher than estimates based on chromium isotopes and reinforce the idea that the environment contained enough oxygen for animals long before their evolution.

[1]  T. Lenton,et al.  Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon , 2017, Nature Communications.

[2]  G. Cox,et al.  Basin redox and primary productivity within the Mesoproterozoic Roper Seaway , 2016 .

[3]  N. Planavsky,et al.  A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic , 2016 .

[4]  A. Knoll,et al.  Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China , 2016, Nature Communications.

[5]  D. Canfield,et al.  Sufficient oxygen for animal respiration 1,400 million years ago , 2016, Proceedings of the National Academy of Sciences.

[6]  Linda C. Kah,et al.  Oxygenation of the mid-Proterozoic atmosphere: clues from chromium isotopes in carbonates , 2016 .

[7]  R. Keil,et al.  A multiproxy approach to understanding the "enhanced" flux of organic matter through the oxygen deficient waters of the Arabian Sea , 2015 .

[8]  Juan A. Bonachela,et al.  Resource allocation by the marine cyanobacterium Synechococcus WH8102 in response to different nutrient supply ratios , 2015 .

[9]  D. Canfield,et al.  Orbital forcing of climate 1.4 billion years ago , 2015, Proceedings of the National Academy of Sciences.

[10]  N. Butterfield Early evolution of the Eukaryota , 2015 .

[11]  S. Naqvi,et al.  Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: estuary to continental slope , 2014 .

[12]  Christopher T. Reinhard,et al.  Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals , 2014, Science.

[13]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[14]  A. Knoll Paleobiological perspectives on early eukaryotic evolution. , 2014, Cold Spring Harbor perspectives in biology.

[15]  Z. Lei,et al.  Geological characteristics and tectonic significance of unconformities in Mesoproterozoic successions in the northern margin of the North China Block , 2014 .

[16]  Min-Te Chen,et al.  The Ti/Al molar ratio as a new proxy for tracing sediment transportation processes and its application in aeolian events and sea level change in East Asia , 2013 .

[17]  A. Bekker,et al.  Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales , 2013 .

[18]  Huaichun Wu,et al.  Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China , 2012 .

[19]  T. Algeo,et al.  Paleoceanographic applications of trace-metal concentration data , 2012 .

[20]  D. Canfield,et al.  The Iron Biogeochemical Cycle Past and Present , 2012 .

[21]  Q. Meng,et al.  Stratigraphic and sedimentary records of the rift to drift evolution of the northern North China craton at the Paleo- to Mesoproterozoic transition , 2011 .

[22]  R. Mitchell,et al.  Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna , 2011 .

[23]  A. Knoll The Multiple Origins of Complex Multicellularity , 2011 .

[24]  D. Canfield,et al.  Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History , 2011 .

[25]  E. Javaux Evolution of early eukaryotes in Precambrian oceans , 2011 .

[26]  N. Sheldon,et al.  The ~1100Ma Sturgeon Falls paleosol revisited: Implications for Mesoproterozoic weathering environments and atmospheric CO2 levels , 2010 .

[27]  P. López‐García,et al.  Origins and evolution of life : an astrobiological perspective , 2010 .

[28]  A. Immenhauser Estimating palaeo-water depth from the physical rock record , 2009 .

[29]  J. Banfield,et al.  Unravelling ancient microbial history with community proteogenomics and lipid geochemistry , 2009, Nature Reviews Microbiology.

[30]  D. Z. Piper,et al.  A marine biogeochemical perspective on black shale deposition , 2009 .

[31]  N. Sheldon,et al.  Weathering and paleosol formation in the 1.1 Ga Keweenawan Rift , 2009 .

[32]  Zhou Hong-ying Zircon and beddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China , 2009 .

[33]  R. Glud Oxygen dynamics of marine sediments , 2008 .

[34]  Deborah K. Steinberg,et al.  The flux of bio- and lithogenic material associated with sinking particles in the mesopelagic “twilight zone” of the northwest and North Central Pacific Ocean , 2008 .

[35]  A. Anbar,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[36]  T. Lyons,et al.  A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins , 2006 .

[37]  R. Berner,et al.  The Weathering of Sedimentary Organic Matter as a Control on Atmospheric O2: II. Theoretical Modeling , 2006, American Journal of Science.

[38]  T. Lyons,et al.  Trace metals as paleoredox and paleoproductivity proxies: An update , 2006 .

[39]  Thomas J. Algeo,et al.  Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions , 2006 .

[40]  S. Naqvi,et al.  Coastal biogeochemical processes in the north Indian Ocean (14, S-W) , 2006 .

[41]  A. Knoll,et al.  Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea , 2005, Nature.

[42]  G. Cowie The biogeochemistry of Arabian Sea surficial sediments: A review of recent studies , 2005 .

[43]  D. Canfield,et al.  Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates , 2005 .

[44]  R. Pancost,et al.  Orbital forcing of organic carbon burial in the proto-North Atlantic during oceanic anoxic event 2 , 2004 .

[45]  M. Krom,et al.  A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide , 2004 .

[46]  S. Derenne,et al.  Depositional conditions and organic matter preservation pathways in an epicontinental environment: the Upper Jurassic Kashpir Oil Shales (Volga Basin, Russia) , 2003 .

[47]  R. Rudnick,et al.  3.01 – Composition of the Continental Crust , 2003 .

[48]  R. Pancost,et al.  Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event , 2002 .

[49]  J. Elser,et al.  Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere , 2002 .

[50]  R. Raiswell,et al.  The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition , 2002 .

[51]  J. Damsté,et al.  The influence of oxic degradation on the sedimentary biomarker record II. Evidence from Arabian Sea sediments , 2002 .

[52]  J. Baldock,et al.  The biochemical and elemental compositions of marine plankton: A NMR perspective , 2002 .

[53]  E. Kristensen,et al.  Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3−, and SO42−), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation , 2001 .

[54]  S. Wakeham,et al.  A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals , 2001 .

[55]  S. Golubić,et al.  Early cyanobacterial fossil record: preservation, palaeoenvironments and identification , 1999 .

[56]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[57]  W. Balzer,et al.  Recycling of organic matter along a shelf-slope transect across the N.W. European Continental Margin (goban spur) , 1998 .

[58]  D. Canfield,et al.  Benthic mineralization and exchange in Arctic sediments (Svalbard, Norway) , 1998 .

[59]  B. Jørgensen,et al.  Temperature dependence and rates of sulfate reduction in cold sediments of svalbard, arctic ocean , 1998 .

[60]  D. Canfield,et al.  Sources of iron for pyrite formation in marine sediments , 1998 .

[61]  Hilairy E. Hartnett,et al.  Influence of oxygen exposure time on organic carbon preservation in continental margin sediments , 1998, Nature.

[62]  D. Canfield,et al.  Pathways of carbon oxidation in continental margin sediments off central Chile. , 1996, Limnology and oceanography.

[63]  K. Johnson,et al.  Biogenic Matter Diagenesis on the Sea Floor: A Comparison Between Two Continental Margin Transects , 1996 .

[64]  R. Jahnke,et al.  The global ocean flux of particulate organic carbon: Areal distribution and magnitude , 1996 .

[65]  N. Blair,et al.  Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments , 1996 .

[66]  D. Hammond,et al.  Early diagenesis of organic material in equatorial Pacific sediments: stpichiometry and kinetics , 1996 .

[67]  S. Calvert,et al.  On the organic carbon maximum on the continental slope of the eastern Arabian Sea , 1995 .

[68]  B. Jørgensen,et al.  Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus bay, Denmark , 1994 .

[69]  B. Jørgensen,et al.  Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements , 1994 .

[70]  T. Blackburn,et al.  Arctic sediments (Svalbard): consumption and microdistribution of oxygen , 1994 .

[71]  D. Canfield,et al.  Factors influencing organic carbon preservation in marine sediments. , 1994, Chemical geology.

[72]  D. Canfield,et al.  Pathways of organic carbon oxidation in three continental margin sediments. , 1993, Marine geology.

[73]  A. Devol,et al.  Benthic fluxes and nitrogen cycling in sediments of the continental margin of the eastern North Paci , 1993 .

[74]  Gregory L. Cowie,et al.  Sources and relative reactivities of amino acids, neutral sugars, and lignin in an intermittently anoxic marine environment , 1992 .

[75]  H Rasmussen,et al.  Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion , 1992 .

[76]  C. Reimers,et al.  Carbon fluxes and burial rates over the continental slope and rise off central California with impli , 1992 .

[77]  B. Jørgensen,et al.  Oxygen uptake, bacterial distribution, and carbon-nitrogen-sulfur cycling in sediments from the baltic sea - North sea transition , 1989 .

[78]  W. Martin,et al.  Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site , 1989 .

[79]  D. Welte,et al.  Petroleum Formation and Occurrence , 1989 .

[80]  D. Canfield,et al.  Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. , 1989, Deep-sea research. Part A, Oceanographic research papers.

[81]  H. D. Holland,et al.  The Sturgeon Falls paleosol and the composition of the atmosphere 1.1 Ga BP. , 1988, Precambrian research.

[82]  J. Chanton,et al.  Biogeochemical cycling in an organic-rich coastal marine basin. 8. A sulfur isotopic budget balanced by differential diffusion across the sediment-water interface , 1987 .

[83]  David M. Karl,et al.  VERTEX: carbon cycling in the northeast Pacific , 1987 .

[84]  R. Merewether,et al.  Oxygen microprofiles measured in situ in deep ocean sediments , 1986, Nature.

[85]  D. Canfield,et al.  The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales , 1986 .

[86]  J. Espitalie Use of Tmax as a maturation index for different types of organic matter: comparison with vitrinite reflectance , 1986 .

[87]  R. Aller,et al.  Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones , 1986 .

[88]  R. Philp Petroleum Formation and Occurrence , 1985 .

[89]  L. Pratt Influence of Paleoenvironmental Factors on Preservation of Organic Matter in Middle Cretaceous Greenhorn Formation, Pueblo, Colorado , 1984 .

[90]  C. Reimers,et al.  The partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean , 1983 .

[91]  J.-F. Minster,et al.  Tracers in the Sea , 1982 .

[92]  J. Cole,et al.  Sedimentation of biogenic matter in the deep ocean , 1982 .

[93]  R. Aller,et al.  Diffusion coefficients in nearshore marine sediments1 , 1982 .

[94]  K. Kvenvolden Petroleum formation and occurrence—A new approach to oil and gas exploration: by B.P. Tissot and D.H. Welte, Springer-Verlag, Berlin, 1978, XVIII + 538 pp., 58 tables, 243 figures. , 1980 .

[95]  B. Durand Kerogen: Insoluble Organic Matter from Sedimentary Rocks , 1980 .

[96]  N. N. Zhabina,et al.  A method of determination of various sulfur compounds in sea sediments and rocks , 1978 .

[97]  J. Espitalie,et al.  Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d'évolution , 1977 .

[98]  L. V. Berkner,et al.  On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere , 1965 .

[99]  J. R. Nursall,et al.  Oxygen as a Prerequisite to the Origin of the Metazoa , 1959, Nature.