The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method

The use of electric current to activate the consolidation and reaction-sintering of materials is reviewed with special emphasis of the spark plasma sintering method. The method has been used extensively over the past decade with results showing clear benefits over conventional methods. The review critically examines the important features of this method and their individual roles in the observed enhancement of the consolidation process and the properties of the resulting materials.

[1]  Z. A. Munir,et al.  Modified interfacial reactions in Ag–Zn multilayers under the influence of high DC currents , 2004 .

[2]  S. Hong,et al.  Spark plasma sintering behavior of nanocrystalline WC-10Co cemented carbide powders , 2003 .

[3]  Z. A. Munir,et al.  Electric current enhanced defect mobility in Ni3Ti intermetallics , 2004 .

[4]  N. Shinya,et al.  Fabrication of Ni-P alloy closed cellular solid containing polymer by the pulse current hot pressing technique , 2003 .

[5]  Zhe Zhao,et al.  Spark Plasma Sintering of Alumina , 2002 .

[6]  O. Ohashi,et al.  Reduction mechanism of surface oxide films and characterization of formations on pulse electric-current sintered Al–Mg alloy powders , 2005 .

[7]  Z. A. Munir,et al.  Evaporation of KC1 crystals in the presence of a.c. and d.c. fields , 1987 .

[8]  W. Pan,et al.  Machinable and mechanical properties of sintered Al2O3-Ti3SiC2 composites , 2004 .

[9]  A. Chiba,et al.  Strength and superconductivity of Nb3Al prepared by spark plasma sintering , 2002 .

[10]  K. Matsugi,et al.  Observation of particle behavior in copper powder compact during pulsed electric discharge , 2003 .

[11]  K. Khor,et al.  Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). , 2004, Biomaterials.

[12]  R. German Sintering theory and practice , 1996 .

[13]  M. Tokita Development of Large-Size Ceramic/Metal Bulk FGM Fabricated by Spark Plasma Sintering , 1999 .

[14]  I. Reaney,et al.  TEM Characterization of Single- and Multilayer Triol-Based Sol–Gel PZT (53/47) Thin Films , 2004 .

[15]  R. German,et al.  Morphology relations during bulk-transport sintering , 1975 .

[16]  Z. A. Munir,et al.  Field-enhanced evaporation of cleaved (100) surfaces of alkali halides , 1983 .

[17]  W. Liu,et al.  Effect of the homogenization treatment in an electric field on T1, precipitation in 2091 AlLi alloy , 1995 .

[18]  Wei Zhang,et al.  Consolidation of Fe-Co-Nd-Dy-B Glassy Powders by Spark-Plasma Sintering and Magnetic Properties of the Consolidated Alloys , 2003 .

[19]  J. H. Lee,et al.  Development of Nanocrystalline Wear‐Resistant Y‐TZP Ceramics , 2004 .

[20]  R. Xie,et al.  Fabrication and characterization of potassium–sodium niobate piezoelectric ceramics by spark-plasma-sintering method , 2004 .

[21]  V. Mamedov,et al.  Spark plasma sintering as advanced PM sintering method , 2002 .

[22]  J. Zhang,et al.  Chemical stability and microstructure of Nd-Fe-B magnet prepared by spark plasma sintering , 2004 .

[23]  S. Kanzaki,et al.  Effects of heating rate and particle size on pulse electric current sintering of alumina , 2003 .

[24]  D. Clark,et al.  Microwave Processing of Materials , 1996 .

[25]  Z. A. Munir,et al.  Field effects in self-propagating solid-state synthesis reactions , 1997 .

[26]  Z. A. Munir,et al.  One-step synthesis and consolidation of nanophase iron aluminide , 2001 .

[27]  N. Park,et al.  Manufacturing of Cu-15.0Zn-8.1Al Shape Memory Alloy Using Spark Plasma Sintering , 2004 .

[28]  Z. A. Munir,et al.  Field-Effects in Self-Propagating Solid-State Reactions , 1998 .

[29]  K. Ozaki,et al.  Sintering Phenomena on Initial Stage in Pulsed Current Sintering , 2000 .

[30]  M. Omori Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) , 2000 .

[31]  M. Mayo,et al.  Rapid rate sintering of nanocrystalline ZrO2-3 mol% Y2O3 , 1996 .

[32]  R. Telle,et al.  Synthesis of Hard Materials by Field Activation: The Synthesis of Solid Solutions and Composites in the TiB2–WB2–CrB2 System , 2001 .

[33]  A. Inoue,et al.  Preparation of Fe_ Co_ Ga_5P_ C_4B_4 Bulk Glassy Alloy with Good Soft Magnetic Properties by Spark-Plasma Sintering of Glassy Powder , 2002 .

[34]  S. Chan,et al.  Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: spark plasma sintering (SPS) of 0.5 wt.% silica-doped yttria-stabilized zirconia (YSZ) , 2004 .

[35]  Z. A. Munir,et al.  High-flux current effects in interfacial reactions in Au–Al multilayers , 2002 .

[36]  C. Elbaum,et al.  Electrical charge on grain boundaries in sodium chloride , 1965 .

[37]  Zuhair A. Munir,et al.  Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions , 2005 .

[38]  S. Risbud,et al.  Clean grain boundaries in aluminium nitride ceramics densified without additives by a plasma-activated sintering process , 1994 .

[39]  W. Wang,et al.  Numerical Simulation of the Temperature Field in Sintering of BN by SPS , 2003 .

[40]  Yo Kobayashi,et al.  Dielectric properties of spark-plasma-sintered BaTiO3 , 1999 .

[41]  T. Wada,et al.  Ferroelectric NaNbO3 Ceramics Fabricated by Spark Plasma Sintering , 2003 .

[42]  T. Nishimura,et al.  Dielectric and Piezoelectric Properties of Barium-substituted Sr1.9Ca0.1NaNb5O15 Ceramics , 2003 .

[43]  Z. A. Munir,et al.  Synthesis of nanocrystalline NbAl3 by mechanical and field activation , 2001 .

[44]  S. Nakamura,et al.  Biocompatibility of dense hydroxyapatite prepared using an SPS process. , 2002, Journal of biomedical materials research.

[45]  D. Jiang,et al.  Deposition of Silicon Carbide/Titanium Carbide Laminar Ceramics by Electrophoresis and Densification by Spark Plasma Sintering , 2004 .

[46]  Y. Han,et al.  Characterisation of mechanically alloyed Ti–Al–B nanocomposite consolidated by spark plasma sintering , 2003 .

[47]  Z. A. Munir,et al.  Fundamental investigations on the spark plasma sintering/synthesis process: I. Effect of dc pulsing on reactivity , 2005 .

[48]  Z. A. Munir,et al.  Synthesis of MoSi2xNb and MoSi2yZrO2 composites by the field-activated combustion method , 1995 .

[49]  Jun Jiang,et al.  Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering , 2005 .

[50]  Z. A. Munir,et al.  Incorporating Mg into the Si sub-lattice of molybdenum disilicide , 2003 .

[51]  Zuhair A. Munir,et al.  Electromigration effects in Al-Au multilayers , 2001 .

[52]  A. Inoue,et al.  Preparation of Fe65Co10Ga5P12C4B4 bulk glassy alloy with good soft magnetic properties by spark-plasma sintering of glassy powder : Bulk amorphous, nano-crystalline and nano-quasicrystalline alloys IV , 2002 .

[53]  O. Lomovsky,et al.  Microstructure changes in TiB2-Cu nanocomposite under sintering , 2004 .

[54]  Z. A. Munir,et al.  A kinetic model for the field-activated synthesis of MoSi2/SiC composites: simulation of SPS conditions , 2002 .

[55]  H. Nanto,et al.  Evaluation of ZnS-family phosphors for neutron detectors using photon counting method , 2004 .

[56]  W. Kingery,et al.  Study of the Initial Stages of Sintering Solids by Viscous Flow, Evaporation‐Condensation, and Self‐Diffusion , 1955 .

[57]  Yong Huang,et al.  Mechanical properties and microstructure of laminated Si3N4+SiCw/BN+Al2O3 ceramics densified by spark plasma sintering , 2002 .

[58]  H. Kageyama,et al.  Rapid preparation of indium tin oxide sputtering targets by spark plasma sintering , 2002 .

[59]  L. Stanciu,et al.  Effects of heating rate on densification and grain growth during field-assisted sintering of α-Al2O3 and MoSi2 powders , 2001 .

[60]  Z. A. Munir,et al.  Dense nanocrystalline TiB2–TiC composites formed by field activation from high-energy ball milled reactants , 2002 .

[61]  H. Kageyama,et al.  Structures and magnetic properties of Nd–Fe–B bulk nanocomposite magnets produced by the spark plasma sintering method , 2004 .

[62]  Soo-yong Lee,et al.  Preparation of Dense MgB2 Bulk Superconductors by Spark Plasma Sintering , 2003 .

[63]  Antonio Mario Locci,et al.  Field-activated pressure-assisted synthesis of NiTi , 2003 .

[64]  Z. A. Munir,et al.  The influence of an electric discharge on the growth of Au crystallites on cleaved (100) NaCl substrates , 1989 .

[65]  O. Graeve,et al.  Modeling of wave configuration during electrically ignited combustion synthesis , 2001 .

[66]  R. Yuan,et al.  Spark Plasma Sintering : A Promising New Technique and its Mechanism , 2004 .

[67]  M. Naka,et al.  In situ joining of dissimilar nanocrystalline materials by spark plasma sintering , 2003 .

[68]  Z. Fu,et al.  Spark plasma sintering of aluminium nitride transparent ceramics , 2004 .

[69]  Z. A. Munir,et al.  Crystallization of metallic glasses under the influence of high density dc currents , 2004 .

[70]  K. Kakegawa,et al.  Eutectic Al2O3–GdAlO3 composite consolidated by combined rapid quenching and spark plasma sintering technique , 2004 .

[71]  Jae Won Lee,et al.  Synthesis of Dense TiB2‐TiN Nanocrystalline Composites through Mechanical and Field Activation , 2004 .

[72]  T. Noda,et al.  Frequency effect on pulse electric current sintering process of pure aluminum powder , 2003 .

[73]  M. Kanou,et al.  Properties of /spl alpha/-Fe/Nd/sub 2/Fe/sub 14/B-type Nd-Fe-Co-V-B system bulk exchange-spring magnets prepared by spark plasma sintering , 2003 .

[74]  Zhe Zhao,et al.  Preparation and properties of lead zirconate stannate titanate sintered by spark plasma sintering , 2004 .

[75]  M. Tabuchi,et al.  Rapid Preparation of Lead Titanate Sputtering Target Using Spark‐Plasma Sintering , 2001 .

[76]  T. Shibayama,et al.  Effect of microstructure on oxidation resistance of MoSi2 fabricated by spark plasma sintering , 2004 .

[77]  Z. A. Munir,et al.  Synthesis and characterization of Nb5Si3/Nb functionally graded composites , 2004 .

[78]  Y. Akimune,et al.  Phase transition and electrical conductivity of scandia-stabilized zirconia prepared by spark plasma sintering process , 2005 .

[79]  X. Zhang,et al.  AlN–TiB2 composites fabricated by spark plasma sintering , 2005 .

[80]  H. Conrad,et al.  Microstructure gradient in 60Sn40Pb solder joints annealed under an external electric field , 2004 .

[81]  O. Ohashi,et al.  Effect of Surface Roughness on the Joints of Bonded SUS304 Stainless Steel using a Pulse Electric Current Bonding Process , 2003 .

[82]  Shengqiang Bai,et al.  Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer , 2004 .

[83]  R. Raj,et al.  Measurement of an electrical potential induced by normal stress applied to the interface of an ionic material at elevated temperatures , 1999 .

[84]  M. Nygren,et al.  Non-Equilibrium Processing of Ceramics , 2003 .

[85]  R. German,et al.  Surface Area Reduction During Isothermal Sintering , 1976 .

[86]  Z. A. Munir,et al.  Consolidation of nanostructured SiC with disorder-order transformation , 2004 .

[87]  B. Kear,et al.  The effect of applied stress on densification of nanostructured zirconia during sinter-forging , 1994 .

[88]  W. Qu,et al.  Synthesis of dense NiZn ferrites by spark plasma sintering , 2002 .

[89]  Z. A. Munir,et al.  Titanium Diboride–Tungsten Diboride Solid Solutions Formed by Induction‐Field‐Activated Combustion Synthesis , 2003 .

[90]  L. D. Chen,et al.  Microstructure inhomogeneity in Al2O3 sintered bodies formed during the plasma-activated sintering process , 1999 .

[91]  Z. A. Munir,et al.  Consolidation and properties of binderless sub-micron tungsten carbide by field-activated sintering , 2004 .

[92]  J. Cui,et al.  A study on the ageing treatment of 2091 Al-Li alloy with an electric field , 1997 .

[93]  M. Nygren,et al.  Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering , 2004 .

[94]  Z. A. Munir,et al.  Synthesis of Dense, High‐Defect‐Concentration B4C through Mechanical Activation and Field‐Assisted Combustion , 2004 .

[95]  Robert L. Coble,et al.  Initial Sintering of Alumina and Hematite , 1958 .

[96]  Li Tao,et al.  A new kind of NdFeB magnet prepared by spark plasma sintering , 2003, Digest of INTERMAG 2003. International Magnetics Conference (Cat. No.03CH37401).

[97]  S. Hong,et al.  Microstructures of binderless tungsten carbides sintered by spark plasma sintering process , 2003 .

[98]  R. Orrú,et al.  Synthesis of dense nanometric MoSi_2 through mechanical and field activation , 2001 .

[99]  M. Nygren,et al.  Optical properties of SPS-ed Y- and (Dy,Y)-α-sialon ceramics , 2004 .

[100]  R. Raj,et al.  Space-charge-controlled diffusional creep: Volume diffusion case , 1996 .

[101]  M. Nygren,et al.  Formidable Increase in the Superplasticity of Ceramics in the Presence of an Electric Field , 2003 .

[102]  Z. A. Munir,et al.  Enhanced growth of intermetallic phases in the Ni–Ti system by current effects , 2003 .

[103]  G. Spinolo,et al.  Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies , 2004 .

[104]  Z. A. Munir,et al.  The development of thermal etch pits on cleaved NaCl crystals in the presence of an electric field , 1984 .

[105]  Cai Shen,et al.  Sol–gel synthesis and spark plasma sintering of Ba0.5Sr0.5TiO3 , 2004 .

[106]  Y. Kondo,et al.  Electric Current Path and Temperature Distribution for Spark Sintering , 1997 .

[107]  Z. A. Munir,et al.  Consolidation of Nanostructured β‐SiC by Spark Plasma Sintering , 2004 .

[108]  C. Balázsi,et al.  Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering , 2005 .

[109]  Zhe Zhao,et al.  Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics , 2004 .

[110]  Lynn,et al.  Increased Elemental Specificity of Positron Annihilation Spectra. , 1996, Physical review letters.

[111]  H. Conrad,et al.  Influence of an external electric field during quenching on the hardenability of steel , 2001 .

[112]  M. Nygren,et al.  On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering , 2003 .

[113]  D. Oleszak,et al.  Nickel-molybdenum catalysts fabricated by mechanical alloying and spark plasma sintering , 2000 .

[114]  H. Conrad Electroplasticity in metals and ceramics , 2000 .