Fano Resonances Generated in a Single Dielectric Homogeneous Nanoparticle with High Structural Symmetry

Fano resonances in plasmonic nanostructures suppress radiative losses effectively, but nonradiative Ohmic losses limit the performance of many important applications. In addition, it is hard to generate strong Fano resonances in a single plasmonic homogeneous nanoparticle with high structural symmetry. Dielectric nanostructures offer a potential solution to the above issues. There are various subradiant hybrid modes in a single dielectric nanoparticle, making it possible to generate Fano resonances. This study shows that due to the excitation of the subradiant hybrid EH12δ mode a strong Fano resonance is generated in a single silicon nanodisk. Higher-order subradiant hybrid modes (EH13δ and EH14δ) are excited by manipulating the disk radius, and multiple Fano resonances arise in spectra. These optical responses are not dependent on a retardation effect, and strong Fano resonances are generated even for a very thin disk. One can get similar results in a single dielectric triangle, square, or rectangle nano...

[1]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[2]  Peter Nordlander,et al.  Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. , 2008, Nano letters.

[3]  P. Nordlander,et al.  Fanoshells: nanoparticles with built-in Fano resonances. , 2010, Nano letters.

[4]  Allen W. Glisson,et al.  Computed Modal Field Distributions for Isolated Dielectric Resonators , 1984 .

[5]  L. Lagae,et al.  Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods. , 2014, Nano letters.

[6]  L. Dal Negro,et al.  Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays. , 2013, Nano letters.

[7]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[8]  Peter Nordlander,et al.  Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. , 2009, ACS nano.

[9]  Igal Brener,et al.  Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances , 2014, Nature Communications.

[10]  Peter Nordlander,et al.  Heterodimers: plasmonic properties of mismatched nanoparticle pairs. , 2010, ACS nano.

[11]  C. Lambert,et al.  Giant thermopower and figure of merit in single-molecule devices , 2008, 0811.3029.

[12]  Kwang S. Kim,et al.  Fast DNA sequencing with a graphene-based nanochannel device. , 2011, Nature nanotechnology.

[13]  J. Aizpurua,et al.  Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers , 2013 .

[14]  A Paul Alivisatos,et al.  Transition from isolated to collective modes in plasmonic oligomers. , 2010, Nano letters.

[15]  A. Polman,et al.  Designing dielectric resonators on substrates: combining magnetic and electric resonances. , 2013, Optics express.

[16]  Arkady M. Satanin,et al.  Classical analogy of Fano resonances , 2006 .

[17]  N. Zheludev,et al.  Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. , 2013, Optics express.

[18]  Hai-Qing Lin,et al.  Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle clusters , 2013 .

[19]  J. Dionne,et al.  Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. , 2011, Nano letters.

[20]  Alp Artar,et al.  Directional double Fano resonances in plasmonic hetero-oligomers. , 2011, Nano letters.

[21]  Woo Youn Kim,et al.  The origin of dips for the graphene-based DNA sequencing device. , 2011, Physical chemistry chemical physics : PCCP.

[22]  A. Tavakkoli K. G.,et al.  Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. , 2011, Optics express.

[23]  Xing Zhu,et al.  Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters. , 2013, Nanoscale.

[24]  Geunsik Lee,et al.  Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition. , 2014, ACS nano.

[25]  Igal Brener,et al.  Observation of Fano resonances in all-dielectric nanoparticle oligomers. , 2013, Small.

[26]  Prakash Bhartia,et al.  Dielectric resonator antennas—a review and general design relations for resonant frequency and bandwidth , 1994 .

[27]  S. Fan,et al.  Optical Fano resonance of an individual semiconductor nanostructure. , 2014, Nature materials.

[28]  Na Liu,et al.  Magnetic plasmon formation and propagation in artificial aromatic molecules. , 2012, Nano letters.

[29]  Y. Kivshar,et al.  Near-field mapping of Fano resonances in all-dielectric oligomers , 2014 .

[30]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[31]  Benjamin Gallinet,et al.  Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. , 2011, ACS nano.

[32]  Yuan Hsing Fu,et al.  Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. , 2012, ACS nano.

[33]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[34]  Harald Giessen,et al.  Three-Dimensional Plasmon Rulers , 2011, Science.

[35]  J. Aizpurua,et al.  Strong magnetic response of submicron silicon particles in the infrared. , 2010, Optics express.

[36]  S. Maier,et al.  Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution. , 2013, ACS nano.

[37]  Mohsen Rahmani,et al.  Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape. , 2012, Nano letters.

[38]  Hongxing Xu,et al.  Ultrasensitive size-selection of plasmonic nanoparticles by Fano interference optical force. , 2014, ACS nano.

[39]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[40]  Jianfang Wang,et al.  Universal scaling and Fano resonance in the plasmon coupling between gold nanorods. , 2011, ACS nano.

[41]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[42]  Yang Li,et al.  Manipulating magnetic plasmon propagation in metallic nanocluster networks. , 2012, ACS nano.

[43]  Alexander E. Krasnok,et al.  Superdirective dielectric nanoantennas. , 2014, Nanoscale.

[44]  Y. Kivshar,et al.  Fano Resonances in All-dielectric Oligomers , 2022 .

[45]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[46]  Ruiping Liu,et al.  Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings. , 2012, ACS nano.

[47]  Yu Zhang,et al.  Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing , 2013, Proceedings of the National Academy of Sciences.

[48]  P. Nordlander,et al.  Removing a wedge from a metallic nanodisk reveals a fano resonance. , 2011, Nano letters.

[49]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[50]  Jianfang Wang,et al.  Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking. , 2012, Small.

[51]  Mingjiang Zhang,et al.  Excitation of Multiple Fano Resonances in Plasmonic Clusters with D2h Point Group Symmetry , 2013 .

[52]  Gennady Shvets,et al.  Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. , 2012, Nature materials.

[53]  J. Ferrer,et al.  Impact of Fano and Breit-Wigner resonances in the thermoelectric properties of nanoscale junctions , 2013, 1307.2837.

[54]  P. Nordlander,et al.  Shedding light on dark plasmons in gold nanorings , 2008 .

[55]  Yonghao Cui,et al.  Nanorod orientation dependence of tunable Fano resonance in plasmonic nanorod heptamers. , 2013, Nanoscale.

[56]  M. Sinclair,et al.  Realizing optical magnetism from dielectric metamaterials. , 2012, Physical review letters.

[57]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[58]  Guangyuan Li,et al.  Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. , 2013, ACS nano.

[59]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[60]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[61]  I. Brener,et al.  Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. , 2013, ACS nano.

[62]  Ji Zhou,et al.  Mie resonance-based dielectric metamaterials , 2009 .

[63]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[64]  Boris N. Chichkov,et al.  Optical spectroscopy of single Si nanocylinders with magnetic and electric resonances , 2014, Scientific Reports.

[65]  Boris N. Chichkov,et al.  Optical response features of Si-nanoparticle arrays , 2010 .

[66]  Olivier J. F. Martin,et al.  Controlling the Fano interference in a plasmonic lattice , 2007 .

[67]  J. Aizpurua,et al.  Dielectric antennas--a suitable platform for controlling magnetic dipolar emission. , 2012, Optics express.

[68]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[69]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[70]  Q. Gong,et al.  Chaos-induced transparency in an ultrahigh-Q optical microcavity , 2012, 1209.4441.

[71]  Zhaowei Liu,et al.  From Fano-like interference to superscattering with a single metallic nanodisk. , 2014, Nanoscale.

[72]  Wei Liu,et al.  Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters. , 2012, Nanoscale.

[73]  Yuri S. Kivshar,et al.  Near-Field Mapping of Optical Modes on All-Dielectric Silicon Nanodisks , 2014 .