Repurposing type I–F CRISPR–Cas system as a transcriptional activation tool in human cells

Class 2 CRISPR–Cas proteins have been widely developed as genome editing and transcriptional regulating tools. Class 1 type I CRISPR–Cas constitutes ~60% of all the CRISPR–Cas systems. However, only type I–B and I–E systems have been used to control mammalian gene expression and for genome editing. Here we demonstrate the feasibility of using type I–F system to regulate human gene expression. By fusing transcription activation domain to Pseudomonas aeruginosa type I–F Cas proteins, we activate gene transcription in human cells. In most cases, type I–F system is more efficient than other CRISPR-based systems. Transcription activation is enhanced by elongating the crRNA. In addition, we achieve multiplexed gene activation with a crRNA array. Furthermore, type I–F system activates target genes specifically without off-target transcription activation. These data demonstrate the robustness and programmability of type I–F CRISPR–Cas in human cells. Class 1 type I CRISPR–Cas systems have not been as extensively developed for genome engineering as Class 2 systems. Here the authors modify the Type I–F CRISPR–Cas system for transcriptional activation of gene expression.

[1]  R. Barrangou,et al.  Characterization and Repurposing of Type I and Type II CRISPR-Cas Systems in Bacteria. , 2019, Journal of molecular biology.

[2]  H. Xiang,et al.  Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon. , 2017, Journal of genetics and genomics = Yi chuan xue bao.

[3]  Charles A. Gersbach,et al.  A CRISPR/Cas9-Based System for Reprogramming Cell Lineage Specification , 2014, Stem cell reports.

[4]  Eugene V Koonin,et al.  Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? , 2018, The CRISPR journal.

[5]  Christopher M. Vockley,et al.  Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers , 2015, Nature Biotechnology.

[6]  Yonatan Stelzer,et al.  Editing DNA Methylation in the Mammalian Genome , 2016, Cell.

[7]  Scott Bailey,et al.  Structural basis for promiscuous PAM recognition in type I–E Cascade from E. coli , 2016, Nature.

[8]  R. Terns,et al.  Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. , 2008, Genes & development.

[9]  A. Marchfelder,et al.  Gene Repression in Haloarchaea Using the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas I-B System* , 2016, The Journal of Biological Chemistry.

[10]  H. Morisaka,et al.  CRISPR-Cas3 induces broad and unidirectional genome editing in human cells , 2019, Nature Communications.

[11]  Dipali G. Sashital,et al.  Mechanism of foreign DNA selection in a bacterial adaptive immune system. , 2012, Molecular cell.

[12]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[13]  Stan J. J. Brouns,et al.  Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes , 2008, Science.

[14]  David R. Liu,et al.  Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage , 2016, Nature.

[15]  Konstantin Severinov,et al.  CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. , 2012, Molecular cell.

[16]  Howard Hughes Medical,et al.  Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation , 2015 .

[17]  Jennifer A. Doudna,et al.  Structures of the RNA-guided surveillance complex from a bacterial immune system , 2011, Nature.

[18]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[19]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[20]  Konstantin Severinov,et al.  Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence , 2011, Proceedings of the National Academy of Sciences.

[21]  L. Randau,et al.  Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance. , 2017, Molecular cell.

[22]  K. Thormann,et al.  Interference activity of a minimal Type I CRISPR–Cas system from Shewanella putrefaciens , 2015, Nucleic acids research.

[23]  Peter L. Freddolino,et al.  Introducing a Spectrum of Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas. , 2019, Molecular cell.

[24]  Magnus Lundgren,et al.  Efficient programmable gene silencing by Cascade , 2014, Nucleic acids research.

[25]  Rongguang Zhang,et al.  Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation , 2014, Nature Structural &Molecular Biology.

[26]  James J. Collins,et al.  Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6 , 2018, Science.

[27]  G. Vergnaud,et al.  CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. , 2005, Microbiology.

[28]  G. O’Toole,et al.  Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates , 2011, Microbiology.

[29]  J. Gilbert BACKWARD AND FORWARD , 1952, Awangarda.

[30]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[31]  S. Mulepati,et al.  Crystal structure of a CRISPR RNA–guided surveillance complex bound to a ssDNA target , 2014, Science.

[32]  T. K. Nguyen,et al.  CRISPR technologies for stem cell engineering and regenerative medicine. , 2019, Biotechnology advances.

[33]  Albert J R Heck,et al.  RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions , 2011, Proceedings of the National Academy of Sciences.

[34]  Antonia A. Dominguez,et al.  Transcriptional regulation of hepatic lipogenesis , 2015, Nature Reviews Molecular Cell Biology.

[35]  Stan J. J. Brouns,et al.  Type I-E CRISPR-Cas Systems Discriminate Target from Non-Target DNA through Base Pairing-Independent PAM Recognition , 2013, PLoS genetics.

[36]  Yanli Zheng,et al.  Characterization and repurposing of the endogenous Type I-F CRISPR–Cas system of Zymomonas mobilis for genome engineering , 2019, Nucleic acids research.

[37]  Chase L. Beisel,et al.  Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression , 2014, Nucleic acids research.

[38]  R. Barrangou,et al.  Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus , 2019, Proceedings of the National Academy of Sciences.

[39]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[40]  H. Urlaub,et al.  Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system , 2016, Nucleic acids research.

[41]  Jos Boekhorst,et al.  Degenerate target sites mediate rapid primed CRISPR adaptation , 2014, Proceedings of the National Academy of Sciences.

[42]  Jennifer A. Doudna,et al.  Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease , 2010, Science.

[43]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[44]  Yan Zhang,et al.  Harnessing Type I and Type III CRISPR-Cas systems for genome editing , 2015, Nucleic acids research.

[45]  S. Mulepati,et al.  Crystal Structure of the Largest Subunit of a Bacterial RNA-guided Immune Complex and Its Role in DNA Target Binding* , 2012, The Journal of Biological Chemistry.

[46]  B. Wiedenheft,et al.  Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa , 2015, Nucleic acids research.

[47]  Scott Bailey,et al.  In Vitro Reconstitution of an Escherichia coli RNA-guided Immune System Reveals Unidirectional, ATP-dependent Degradation of DNA Target* , 2013, The Journal of Biological Chemistry.

[48]  S. MakarovaKira,et al.  Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? , 2018 .

[49]  Jennifer A. Doudna,et al.  CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity , 2018, Science.

[50]  Chase L. Beisel,et al.  Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells , 2019, Nature Biotechnology.

[51]  Daniel H. Haft,et al.  A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes , 2005, PLoS Comput. Biol..

[52]  T. Horii,et al.  Editing of DNA Methylation Using dCas9-Peptide Repeat and scFv-TET1 Catalytic Domain Fusions. , 2018, Methods in molecular biology.

[53]  H. Cao,et al.  Native CRISPR-Cas-Mediated Genome Editing Enables Dissecting and Sensitizing Clinical Multidrug-Resistant P. aeruginosa. , 2019, Cell reports.

[54]  S. Ha,et al.  A CRISPR RNA Is Closely Related With the Size of the Cascade Nucleoprotein Complex , 2019, Front. Microbiol..

[55]  Rolf Backofen,et al.  Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants , 2019, Nature Reviews Microbiology.

[56]  Prashant Rao,et al.  Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex , 2017, Cell.

[57]  Albert J R Heck,et al.  Structural basis for CRISPR RNA-guided DNA recognition by Cascade , 2011, Nature Structural &Molecular Biology.

[58]  N. Perrimon,et al.  Comparative Analysis of Cas9 Activators Across Multiple Species , 2016, Nature Methods.

[59]  Baohui Chen,et al.  Imaging genomic elements in living cells using CRISPR/Cas9. , 2014, Methods in enzymology.

[60]  Murray Moo-Young,et al.  Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium , 2016, Scientific Reports.

[61]  Jennifer A. Doudna,et al.  New CRISPR-Cas systems from uncultivated microbes , 2016, Nature.

[62]  A. Stark,et al.  Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation , 2018, Genes & development.

[63]  R. Barrangou,et al.  The repurposing of type I-E CRISPR-Cascade for gene activation in plants , 2019, Communications Biology.

[64]  Leslie S. Edwards,et al.  Harnessing type I CRISPR–Cas systems for genome engineering in human cells , 2019, Nature Biotechnology.

[65]  G. Lander,et al.  Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex , 2017, Cell.

[66]  Emmanuelle Charpentier,et al.  The Biology of CRISPR-Cas: Backward and Forward , 2018, Cell.

[67]  Eugene V Koonin,et al.  Diversity, classification and evolution of CRISPR-Cas systems. , 2017, Current opinion in microbiology.