Distribution, genetic diversity and potential spatiotemporal scale of alien gene flow in crop wild relatives of rice (Oryza spp.) in Colombia

[1]  E. Van Jaarsveld,et al.  Poaceae , 2018, Monocotyledons.

[2]  J. Loo,et al.  Genetic diversity of Enterolobium cyclocarpum in Colombian seasonally dry tropical forest: implications for conservation and restoration , 2017, Biodiversity and Conservation.

[3]  Chrystian C. Sosa,et al.  Global conservation priorities for crop wild relatives , 2016, Nature Plants.

[4]  X. Scheldeman,et al.  An Integrated Hypothesis on the Domestication of Bactris gasipaes , 2015, PloS one.

[5]  J. Loo,et al.  Uncovering spatial patterns in the natural and human history of Brazil nut (Bertholletia excelsa) across the Amazon Basin , 2015 .

[6]  J. Hadfield,et al.  Are molecular markers useful predictors of adaptive potential? , 2015, Ecology letters.

[7]  Chrystian C. Sosa,et al.  Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: Distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance , 2015 .

[8]  Dong Xu,et al.  Flower‐visiting insects and their potential impact on transgene flow in rice , 2014 .

[9]  R. Eastwood,et al.  Adapting Agriculture to Climate Change: A Global Initiative to Collect, Conserve, and Use Crop Wild Relatives , 2014 .

[10]  B. J. Atwell,et al.  Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? , 2014, Plant science : an international journal of experimental plant biology.

[11]  Nora P. Castañeda‐Álvarez,et al.  A prioritized crop wild relative inventory to help underpin global food security , 2013 .

[12]  M. J. Kim,et al.  Development of Near-isogenic Transgenic Rice Lines Harboring Wild Rice (Oryza grandiglumis)-Derived Fungal Resistance Gene (OgPR1) , 2013 .

[13]  B. vonHoldt,et al.  STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method , 2012, Conservation Genetics Resources.

[14]  B. Schaal,et al.  Association between the geographic distribution during the last glacial maximum of Asian wild rice, Oryza rufipogon (Poaceae), and its current genetic variation. , 2012, American journal of botany.

[15]  Jacob van Etten,et al.  Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal , 2012, PloS one.

[16]  T. Fukao,et al.  SUB1A-dependent and -independent mechanisms are involved in the flooding tolerance of wild rice species. , 2012, The Plant journal : for cell and molecular biology.

[17]  E. Veasey,et al.  Comparison of microsatellites and isozymes in genetic diversity studies of Oryza glumaepatula (Poaceae) populations. , 2012, Revista de biologia tropical.

[18]  D. Neale,et al.  Disentangling the Roles of History and Local Selection in Shaping Clinal Variation of Allele Frequencies and Gene Expression in Norway Spruce (Picea abies) , 2012, Genetics.

[19]  R. Hijmans,et al.  Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. , 2012, Ecology.

[20]  E. Veasey,et al.  Genetic diversity of American wild rice species , 2011 .

[21]  J. Edmonds,et al.  RCP4.5: a pathway for stabilization of radiative forcing by 2100 , 2011 .

[22]  L. Clark,et al.  polysat: an R package for polyploid microsatellite analysis , 2011, Molecular ecology resources.

[23]  P. Hedrick,et al.  Assessing population structure: FST and related measures , 2011, Molecular ecology resources.

[24]  K. Jena The species of the genus Oryza and transfer of useful genes from wild species into cultivated rice, O. sativa. , 2010 .

[25]  D. Fuller,et al.  Consilience of genetics and archaeobotany in the entangled history of rice , 2010 .

[26]  L. Triest,et al.  atetra, a new software program to analyse tetraploid microsatellite data: comparison with tetra and tetrasat , 2010, Molecular ecology resources.

[27]  E. Veasey,et al.  Assessing the genetic structure of Oryza glumaepatula populations with isozyme markers , 2008 .

[28]  Q. Qian,et al.  Establishment of a rice transgene flow model for predicting maximum distances of gene flow in southern China. , 2008, The New phytologist.

[29]  L. Jost GST and its relatives do not measure differentiation , 2008, Molecular ecology.

[30]  E. Veasey,et al.  Morphoagronomic genetic diversity in american wild rice species , 2008 .

[31]  Anne-Béatrice Dufour,et al.  The ade4 Package: Implementing the Duality Diagram for Ecologists , 2007 .

[32]  A. Peterson,et al.  Locating Pleistocene Refugia: Comparing Phylogeographic and Ecological Niche Model Predictions , 2007, PloS one.

[33]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: dominant markers and null alleles , 2007, Molecular ecology notes.

[34]  T. Fichefet,et al.  Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum – Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget , 2007 .

[35]  E. Veasey,et al.  Genetic structure of Brazilian wild rice (Oryza glumaepatula Steud., Poaceae) populations analyzed using microsatellite markers , 2007 .

[36]  R. Hajjar,et al.  The use of wild relatives in crop improvement: a survey of developments over the last 20 years , 2007, Euphytica.

[37]  E. Veasey,et al.  Mating system of Brazilian Oryza glumaepatula populations studied with microsatellite markers. , 2006, Annals of botany.

[38]  Q. Qian,et al.  A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O. rufipogon) and barnyard grass (Echinochloa crusgalli). , 2006, Plant biotechnology journal.

[39]  Zhiping Song,et al.  Low frequency of transgene flow from Bt/CpTI rice to its non-transgenic counterparts planted at close spacing. , 2005, The New phytologist.

[40]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[41]  M. Zucchi,et al.  Genetic Structure of Wild Rice Oryza Glumaepatula Populations in Three Brazilian Biomes Using Microsatellite Markers , 2005, Genetica.

[42]  L. Knowles,et al.  Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation , 2005, Molecular ecology.

[43]  M. Altieri,et al.  Transgenic Crops: Implications for Biodiversity and Sustainable Agriculture , 2005 .

[44]  P. Hedrick A STANDARDIZED GENETIC DIFFERENTIATION MEASURE , 2005, Evolution; international journal of organic evolution.

[45]  S. Vargas,et al.  The Weedy Rice Complex in Costa Rica. I. Morphological Study of Relationships Between Commercial Rice Varieties, Wild Oryza Relatives and Weedy Types , 2005, Genetic Resources and Crop Evolution.

[46]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[47]  A. L. Duc Dangerous Liaisons? When Cultivated Plants Mate with Their Wild Relatives , 2005 .

[48]  Allison A. Snow,et al.  GENETICALLY ENGINEERED ORGANISMS AND THE ENVIRONMENT: CURRENT STATUS AND RECOMMENDATIONS1 , 2005 .

[49]  Youyong Zhu,et al.  Asymmetric gene flow between traditional and hybrid rice varieties (Oryza sativa) indicated by nuclear simple sequence repeats and implications for germplasm conservation. , 2004, The New phytologist.

[50]  H. Schulenburg,et al.  A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level , 2004, Molecular ecology.

[51]  Genlou Sun,et al.  Microsatellite Variation and its Comparison with Allozyme and RAPD Variation in Elymus Fibrosus (Schrenk) Tzvel. (Poaceae) , 2004 .

[52]  L. Rieseberg,et al.  How species evolve collectively: implications of gene flow and selection for the spread of advantageous alleles , 2004, Molecular ecology.

[53]  A. M. Espinoza,et al.  Diversity of native rice (Oryza Poaceae:) species of Costa Rica , 2003, Genetic Resources and Crop Evolution.

[54]  N. Ellstrand,et al.  Dangerous Liaisons?: When Cultivated Plants Mate with Their Wild Relatives , 2003 .

[55]  Baoping Song Identification of Oryza Species with the CD Genome Based on RFLP Analysis of Nuclear Ribosomal ITS Sequences , 2003 .

[56]  K. Kadowaki,et al.  Diversity in the Oryza genus. , 2003, Current opinion in plant biology.

[57]  Ying Zhu,et al.  Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. , 2003, The New phytologist.

[58]  A. M. Espinoza,et al.  Isozyme diversity and analysis of the mating system of the wild rice Oryza latifolia Desv. in Costa Rica , 2002, Genetic Resources and Crop Evolution.

[59]  B. Schaal,et al.  Assessment of population genetic structure in common wild rice Oryza rufipogon Griff. using microsatellite and allozyme markers , 2002, Theoretical and Applied Genetics.

[60]  D. Vaughan,et al.  Analysis of genetic diversity in the Oryza officinalis complex , 2002 .

[61]  Jia-kuan Chen,et al.  Pollen competition between cultivated and wild rice species (Oryza sativa and O. rufipogon) , 2002 .

[62]  C. Fogher,et al.  Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker , 2001, Theoretical and Applied Genetics.

[63]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .

[64]  P. Ranjekar,et al.  Genetic diversity and phylogenetic relationship as revealed by inter simple sequence repeat (ISSR) polymorphism in the genus Oryza , 2000, Theoretical and Applied Genetics.

[65]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[66]  T. Sang,et al.  Phylogeny of rice genomes with emphasis on origins of allotetraploid species. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[67]  D. Brar,et al.  Phylogenetic relationships among Oryza species revealed by AFLP markers , 1999, Theoretical and Applied Genetics.

[68]  H. Morishima,et al.  Population genetic structure of wild rice Oryza glumaepatula distributed in the Amazon flood area influenced by its life‐history traits , 1998 .

[69]  M. T. Jackson,et al.  Taxonomic status of Oryza glumaepatula Steud. II. Hybridization between New World diploids and AA genome species from Asia and Australia , 1998, Genetic Resources and Crop Evolution.

[70]  K. Olsen,et al.  Phylogeographic studies in plants: problems and prospects , 1998 .

[71]  M. E. Ferreira,et al.  Analysis of genetic variability of South American wild rice populations (Oryza glumaepatula) with isozymes and RAPD markers , 1998 .

[72]  D. Brar,et al.  Two new genomes in the Oryza complex identified on the basis of molecular divergence analysis using total genomic DNA hybridization , 1997, Molecular and General Genetics MGG.

[73]  M. T. Jackson,et al.  Hybridization of AA genome rice species from Asia and Australia I. Crosses and development of hybrids , 1997, Genetic Resources and Crop Evolution.

[74]  N. Barton,et al.  The spread of an advantageous allele across a barrier: the effects of random drift and selection against heterozygotes. , 1997, Genetics.

[75]  S. Tanksley,et al.  Polymorphism and phylogenetic relationships among species in the genus Oryza as determined by analysis of nuclear RFLPs , 1992, Theoretical and Applied Genetics.

[76]  B J Bassam,et al.  Fast and sensitive silver staining of DNA in polyacrylamide gels. , 1991, Analytical biochemistry.

[77]  V. Grant,et al.  Origin of Cultivated Rice , 1988 .

[78]  M. Nei Analysis of gene diversity in subdivided populations. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[79]  W. Solano,et al.  Assessment of the conservation status of mesoamerican crop species and their wild realitves in light of climate change , 2016 .

[80]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[81]  R. Wing,et al.  The Wild Relative of Rice: Genomes and Genomics , 2013 .

[82]  Theunis Piersma,et al.  The interplay between habitat availability and population differentiation , 2012 .

[83]  C. Kole Wild Crop Relatives: Genomic and Breeding Resources , 2011 .

[84]  J. Kinyamario,et al.  Dispersal distance of rice (Oryza Sativa L.) pollen at the Tana River delta in the coast province, Kenya , 2009 .

[85]  H. Velthuizen,et al.  Harmonized World Soil Database (version 1.2) , 2008 .

[86]  Xinsheng Zhang,et al.  Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. , 2007, The New phytologist.

[87]  Roeland Kindt,et al.  Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies , 2006 .

[88]  Li Juan Chen,et al.  Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. , 2004, Annals of botany.

[89]  C. N. Stewart,et al.  Transgene introgression from genetically modified crops to their wild relatives , 2004, Nature Reviews Genetics.

[90]  S. Ge,et al.  Rapid Communication - Identification of Oryza Species with the CD Genome Based on RFLP Analysis of Nuclear Ribosomal ITS Sequences , 2003 .

[91]  L. Stein,et al.  Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). , 2002, DNA research : an international journal for rapid publication of reports on genes and genomes.

[92]  J. Goudet FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from Goudet (1995) , 2001 .

[93]  B. Lu,et al.  A study of pollen viability and longevity in Oryza rufipogon, O. sativa, and their hybrids , 2001 .

[94]  D. Vaughan Genus Oryza L. current status of taxonomy , 1989 .