Analysis of the CSP Reduction Method for Chemical Kinetics

This article is concerned with the asymptotic accuracy of the Computational Singular Perturbation (CSP) method developed by Lam and Goussis to reduce the dimensionality of a system of chemical kinetics equations. The method exploits the presence of disparate time scales to model the dynamics by an evolution equation on a lower-dimensional slow manifold. In this article it is shown that the successive applications of the CSP algorithm generate, order by order, the asymptotic expansion of a slow manifold. The results are illustrated on the Michaelis-Menten-Henri equations of enzyme kinetics.

[1]  B O Palsson,et al.  Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis-Menten kinetics. , 1984, Journal of theoretical biology.

[2]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[3]  S. H. Lam,et al.  CONVENTIONAL ASYMPTOTICS AND COMPUTATIONAL SINGULAR PERTURBATION FOR SIMPLIFIED KINETICS MODELLING , 1999 .

[4]  Simon J. Fraser,et al.  The steady state and equilibrium approximations: A geometrical picture , 1988 .

[5]  S. Lam,et al.  The CSP method for simplifying kinetics , 1994 .

[6]  A. Fersht Enzyme structure and mechanism , 1977 .

[7]  Bernhard O. Palsson,et al.  On the dynamics of the irreversible Michaelis-Menten reaction mechanism , 1987 .

[8]  Alexander N Gorban,et al.  ar X iv : c on dm at / 0 20 72 31 v 1 9 J ul 2 00 2 Method of invariant manifold for chemical kinetics , 2002 .

[9]  Epaminondas Mastorakos,et al.  Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data , 1999 .

[10]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[11]  Marc Massot,et al.  Singular perturbation analysis for the reduction of complex chemistry in gaseous mixtures using the entropic structure , 2002 .

[12]  Hans G. Kaper,et al.  Asymptotic analysis of two reduction methods for systems of chemical reactions , 2002 .

[13]  Michael J. Davis,et al.  Geometric investigation of low-dimensional manifolds in systems approaching equilibrium , 1999 .

[14]  Tianfeng Lu,et al.  Complex CSP for Chemistry Reduction and Analysis , 2001 .

[15]  S. H. Lam,et al.  Using CSP to Understand Complex Chemical Kinetics ∗ , 1992 .

[16]  Dimitris A. Goussis,et al.  Asymptotic Solution of Stiff PDEs with the CSP Method: The Reaction Diffusion Equation , 1998, SIAM J. Sci. Comput..

[17]  Iliya V. Karlin,et al.  Method of invariant manifold for chemical kinetics , 2003 .

[18]  S. H. Lam,et al.  A study of homogeneous methanol oxidation kinetics using CSP , 1992 .

[19]  S. H. Lam,et al.  Understanding complex chemical kinetics with computational singular perturbation , 1989 .

[20]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[21]  Mauro Valorani,et al.  Explicit time-scale splitting algorithm for stiff problems: auto-ignition of gaseous mixtures behind a steady shock , 2001 .

[22]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[23]  R. Canosa,et al.  The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces , 2002 .

[24]  H. M. Tsuchiya,et al.  On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics☆ , 1967 .

[25]  Marc R. Roussel,et al.  Geometry of the steady-state approximation: Perturbation and accelerated convergence methods , 1990 .

[26]  A. Fordy APPLICATIONS OF LIE GROUPS TO DIFFERENTIAL EQUATIONS (Graduate Texts in Mathematics) , 1987 .